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Abstract 

The properties of the actuator to sensor transfer functions for various shaped strain 
actuator-sensor pairs on a Bernoulli-Euler beam are investigated. Analytical expres- 
sions for these transfer functions and their associated dereverberated transfer func- 
tions are derived. It is shown that the actuator-sensor pair can be designed such that 
its dereverberated transfer function will have a desirable corner frequency and high 
frequency rolloff rate. 

The analytical and dereverberated transfer functions of noncollocated actuator- 
sensor pairs are compared to those of the collocated pairs. General rules are found 
which determine the frequency at which the transfer function no longer has an inter- 
laced pole-zero pattern. 

Finite element models are constructed which add damping, finite actuator thick- 
ness, and finite beam and actuator widths to the model. The actuator to sensor 
transfer functions are calculated for these models, and the effects of the added factors 
are determined. It is shown that the transverse bending modes of the three dimen- 
sional beam delay the rolloff of the actuator to sensor frequency transfer function 
by at least two decades. Finally, experimental data confirms the results of the three 
dimensional finite element model. 
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Chapter 1 

Introduction 

Modern controlled structures are being designed for high performance, precise appli- 

cations requiring pointing accuracy and vibration suppression. These specifications 

typically require control systems, which often include many sensors and actuators, to 

meet these performance objectives. 

Aubrun [3], and Hall, et al. [12] have discussed the use of hierarchic control in 

flexible structures. This included a global control loop, which is a multiple input, 

multiple output (MIMO) system, whose transfer function includes the overall perfor- 

mance objective. The information in the global control loop is obtained from several 

single input, single output (SISO) local control loops. It is generally true that if 

damping can be added to the local control loop, the robustness of the global control 

loop will be improved. 

This work focuses on the design of the strain actuator to strain sensor transfer 

function of the local control loop. Collocated and dual actuator-sensor pairs will 

produce a transfer function with an alternating pole-zero pattern and no associated 

phase loss. Damping can always be added to the plant transfer function with rate 

feedback. If rate feedback or any positive real compensator is used on the transfer 

function of a collocated and dual actuator-sensor pair, stability is guaranteed [5]. 

15 



16  Chapter 1.    Introduction 

It is desirable to have a transfer function with good observability and controlla- 

bility of the modes which need to be damped. This implies the frequency transfer 

function should rolloff with a slope of at least -10 dB/decade. It is also beneficial for 

the plant transfer function to roll off with a slope of at least -20 dB/decade above 

the bandwidth of damping. Then the loop transfer function will not roll up in the 

frequency range in which the transfer function must crossover. 

Much work has been done recently to reduce the vibrations of various structures, 

including plates [20], two dimensional boxbeams [6], trusses [14], [15], and cylin- 

ders [13], using piezoelectric strain actuators and sensors. Nearly all of the analyses 

in this area improve vibration suppression by optimizing structural placement of the 

sensor or actuator or by improving the controller. Little work has been done regard- 

ing the distributed shape of the actuator and sensor. Clark [7] has investigated the 

use of distributed modal sensors on plates. Unfortunately, this type of sensor requires 

a sensor that is the length of the structure, and its effectiveness is limited by the fact 

that the sensor is shaped to match one particular mode of the structure. In 1987, 

Crawley and de Luis [9] showed that the rectangular piezoelectric strain actuator to 

point strain transfer function exhibits the undesirable property of no rolloff, limiting 

its usefulness. However, Andersson [1] later showed that various shaped strain sensors 

exhibit rolloff with no more phase lag than that of a point sensor. This leads to a 

study of shaped actuator used in conjunction with shaped sensors. 

This work investigates the properties of the transfer functions for various shaped 

strain actuator-sensor pairs. The effect of the actuator and sensor shape upon the 

transfer function's rate and frequency of rolloff is determined. Also, the feasibility of 

implementing these actuator-sensor pairs for local control is examined. 

The wave solution technique has been shown to lend physical insight into transfer 
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function equations [18]. In Chapter 2, this technique is used to derive the analytical 

transfer functions for various collocated shaped actuator-sensor pairs on infinite, semi- 

infinite, and finite Bernoulli-Euler beams. In 1985, de Luis[10] showed that the input 

of the rectangular actuator could be modelled as a coupled moment input at the ends 

of the actuator. Andersson [2] later demonstrated that output of the rectangular 

sensor could be modelled as the difference of the slopes at the ends of the sensor. 

Chapter 2 extends these arguments for the modelling of other shaped actuator-sensor 

pairs. The dereverberated transfer functions associated with these analytical transfer 

functions are then determined. This allows for an estimation of the analytical transfer 

function without generating the complete wave model [16]. 

The analysis of Chapter 3 uses the tools in Chapter 2 to investigate the effects of 

noncollocation upon various actuator to sensor transfer functions. Transfer function 

derivation examples are shown for various actuator-sensor pairs on infinite, semi- 

infinite, and finite Bernoulli-Euler beams. 

Finally, in Chapter 4 finite element models are used to model the realistic effects of 

damping, finite actuator thickness, and finite beam and actuator width. Piezoceramic 

actuators are modelled as coupled field elements with the properties of PZT-5A, 

including the constitutive relations as discussed by Hagood, et.al. [11]. The finite 

width of the actuator and beam are placed in a finite element model to determine if 

the width dimension will cause significant differences from the Bernoulli-Euler beam 

transfer function, as suggested by Sullivan, Hubbard, and Burke [19]. 



Chapter 2 

Analytical Models for Collocated 
Actuator-Sensor Pairs 

This chapter focuses on transfer functions of point and shaped collocated actuator- 

sensor pairs on a Bernoulli-Euler beam. These are derived using wave and modal 

residue solutions, and an effort is made to understand the physics represented in 

these equations. The dereverberated behavior of the transfer functions is discussed, 

and the effect of the distributed actuator-sensor pairs upon the dereverberated trans- 

fer functions and the rolloff characteristics of the plant transfer function is shown. 

Various beam end conditions are considered and their dereverberated behaviors are 

compared. Finally, the implications of this knowledge upon actuator-sensor pair de- 

sign are brought forth. 

2.1     Modelling of Point and Shaped Actuators and 

Sensors 

This chapter compares the rolloff characteristics for the transfer functions of point 

and distributed actuator-sensor pairs.    The point actuator is modelled as a point 

19 



20 Chapter 2.   Analytical Models for Collocated Actuator-Sensor Pairs 

Figure 2.1:   Spatial Shapes of Distributed Actuators and Sensors:  (a) Rect- 
angular, (b) Triangular, (c) Quadratic, (d) Cubic 

force at the appropriate coordinate. Several different shapes of distributed actuators 

and sensors are modelled, including rectangular, triangular, quadratic, and cubic. A 

spatial representation of these shapes is shown in Figure 2.1. 

Assuming the horizontal coordinate, x, is measured from the center of the ac- 

tuator or sensor and la is the length of the actuator or sensor, the mathematical 
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representation for the quadratic shape function is 
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The mathematical representation for the cubic shape function, under the same as- 

sumptions, is 
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These distributed actuators create an internal moment in the beam which corre- 

sponds to their shape. This moment is defined by the equation 

MA= f E(z)A(z)b(z) z dz (2.3) 

where M\ is the internal moment, z is the thickness of the beam, b is the width of 

the beam, E is the stiffness of the beam, and A is the actuation strain [8]. If the 

actuation strain, A, or the width of the actuator, b, are proportional to the prescribed 

shape, then so is the internal moment, MA- 

This internal moment can be modelled by force or moment inputs. The modelling 

of the distributed shaped actuators is shown in Figure 2.2, where la is the length of 
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Figure 2.2:   Applied Forces and Moments Modelling Distributed Actuators: 
(a) Rectangular, (b) Triangular, (c) Quadratic, (d) Cubic 

the distributed actuators. The rectangular actuator is modelled by a coupled mo- 

ment input at the geometric ends of the actuator. This is possible since the moment 

diagram of a beam with a coupled moment input is a rectangular shape. The trian- 

gular actuator is modelled by three forces: a force of magnitude F at the geometric 

ends and a force in the opposite direction of magnitude 2F at the geometric cen- 

ter of the actuator. The moment diagram of a beam with these three forces is a 

triangular shape, which replicates the actuator input. The quadratic and cubic actu- 

ators are modelled by the applied distributed forces shown in Figure 2.2(c) and (d). 

The moment diagrams of these beams shown are the quadratic and cubic shapes, 

respectively. 
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Figure 2.3: Displacement and Slope Measurements Modelling Distributed 
Sensors: (a) Rectangular, (b) Triangular, (c) Quadratic, (d) Cu- 
bic 

These sensors measure the distributed strain of the structure, defined by the equa- 

tion 

V = j_      f{x)e{x)da (2.4) 

where y is the sensor output, e(x) is the longitudinal strain along the structure, and 

Z5 is the length of the sensor. The weighting function f(x) is implemented by varying 

the spatial sensitivity of the sensor [2]. 

The output of the sensors can be modelled by displacement or slope measurements. 

Each sensor is dual to its respective actuator, so the sensor measurements must be 
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dual to the actuator inputs. The point actuator is modelled as a force input, and 

a displacement measurement is dual to a force input. Therefore, the point sensor is 

modelled as a displacement measurement at the appropriate coordinate. 

The rectangular actuator is modelled as two moment inputs applied in opposite 

directions. Since the slope measurement is dual to a moment input, the rectangular 

sensor can be modelled by two slope measurement of opposite directions, or the 

difference of the slope measurements at the geometric ends of the sensor. Figure 2.3 

shows the modelling of the rectangular sensor and the other shaped sensors, where ls 

is the length of the distributed sensors. 

In the case of collocated actuator-sensor pairs, I, = Za. Since displacement is dual 

to force, the triangular sensor is modelled by 3 displacement measurements: the sum 

of the displacements at the geometric ends of the sensor minus twice the displacement 

at the geometric center of the sensor. 

Since the quadratic and cubic sensors are dual to the quadratic and cubic actua- 

tors, they can be modelled using a sum of displacements integrated over the appro- 

priate portion of the sensor length, i.e. a distributed displacement measurement, as 

in Figure 2.3(c) and (d). The equation for the quadratic sensor output, assuming the 

coordinate, x = 0, is at the center of the sensor, is 

yq = — /        w(x)dx + /       w(x)dx — I      w(x)dx (2.5) 

The output of the cubic sensor is also an integrated displacement measurement as 

well, and is expressed as 
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-   J'1' f w(x)dx + j*' i (x - I/.) w(x)dx - J*' j-(x- i/.) ^(x)dx (2.6) 

2.2    Wave Solution for Simple Transfer Functions 

In order to obtain insight into the physical significance of the actuator to sensor 

transfer functions, a few mathematically simple examples are solved. First, these 

include a point force actuator-sensor pair on an infinite, semi-infinite, and finite free- 

free beam, as well as a moment actuator-sensor pair on an infinite, semi-infinite, and 

finite free-free beam. The free-free end conditions are chosen for their similarity to 

the infinite and semi-infinite beams. To obtain an understanding of the effects of a 

distributed and shaped actuator-sensor pair, a rectangular actuator-sensor pair on 

an infinite beam and a triangular actuator-sensor pair on an infinite beam are also 

considered. 

To determine the analytical form of the transfer functions for point and shaped 

collocated actuator-sensor pairs on a Bernoulli-Euler beam, the partial differential 

equation for a beam is solved 

EIw""(x, t) + mw(x, t) = f{x,t) (2.7) 

where w(x,t) is the displacement of the beam, El is constant fiexural stiffness, m is 

constant mass per unit length, and f(x,t) is a forcing function. 
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Assuming a sinusoidal input, the wave solution is of the form 

w(x, t) = Ax sin(u;i - kx) + Bx cos(ut - kx) + Cxe~kx sin(wi) + J)ie_il cos(w<) 

+ A2 sin(ujt + kx) + B2 cos(ut + kx) + C2e
kx sin(wi) + Z^e** cos(a;i)  (2.8) 

2 

where a> is the forcing frequency, and k is the wavenumber where A;4 = r7jf^i [17]. 

The sin(fccc) and cos(A;a;) terms represent the spatial leftward travelling waves, and 

the s'm(-kx) and cos( — kx) terms represent the spatial rightward travelling waves. 

The ekx terms represent the spatial leftward evanescent waves, and the e~kx terms 

represent the spatial rightward evanescent waves. 

2.2.1     Point Actuator and Sensor 

The behavior of a point actuator-sensor pair on an infinite, semi-infinite, and finite 

free-free beam is determined. A point force and a point displacement measurement 

are used to model the point actuator-sensor pair; Figure 2.4 shows these three cases. 

The forcing function F(x,t) is assumed to be of the form f0sm(ujt). Also, F = up, 

where up is the input of the point actuator. The beam is broken into two at the 

point of actuation, as in Figure 2.5, and the boundary conditions are matched at that 

point. 

w(0+,t)   =   w(0~,t) (2.9) 

w'(0+,t)   =   w'{0~,t) (2.10) 

w"(0+,t)   =   w"{0-,t) (2.11) 

F 

El 
w"'(0\t)   =   w(>»Q-tt)-I- (2.12) 
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w 

(a) (b) (c) 

Figure 2.4:   Point Actuator-Sensor Pairs on (a) Infinite,  (b) Semi-infinite 

(c) Finite Beam 

w \ 
1 i 

F 
i 

Figure 2.5: Infinite Beam Broken into Two Beams at the Point of Actuation 

The appropriate end conditions are set and a harmonic balance is performed for each 

portion of the beam. These equations are then solved and the force to displacement 

transfer function is determined. 

The displacement of the infinite beam is 

W\ i{x,t)= < 
A. 

AEIk3 

AEIk3 

cos(ut + kx) + ekx sin(o;i)  ,      x < 0 

cos(a;i - kx) + e~kx sin(a;i)  ,   x > 0 
(2.13) 

The slope and curvature at any point on the beam can be found by simply taking the 

appropriate number of derivatives of Equation 2.13. 

The sensor output for the infinite case is 

yPi w (0,0 
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VPi   =   ^^ [cos(u,*) + sin(u;t)] (2.14) 

where ypi is the output of a point sensor on an infinite beam. 

The transfer function of this actuator-sensor pair is defined as 

ypi    _    w(0,t) 

up F 

VP[   _    cos(a;<) + sin(ut) ^ ^ 

Since no end conditions exist on the infinite beam, the transfer function can have 

phase other than 0° or 180°. The transfer function of a collocated actuator to sensor 

on a finite beam only has phase of 0° or 180°. 

The magnitude of Equation 2.15 can be found by simplifying 

cos(iot) + sln(ujt)    =    Asm(ujt + (/)) 

=    A(sm(ut) cos((j)) + cos(o;i) sin(^)) 

Performing a harmonic balance 

Acos((j)) = 1 

Asm((f>) = 1 

<f> = 45°,225° 

A = \/2,-V2 
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Therefore, the transfer function magnitude is 

2/pi ^ (2.16) 
AEIk3 

While the magnitude and phase of the transfer function can be calculated, it 

is apparent that more physical insights come from the sensor output, Equation 2.14. 

Therefore, for infinite and semi-infinite cases, only the sensor output will be evaluated. 

The infinite beam has the simplest solution due to its innate symmetry and the 

lack of reflecting waves. The sensor output clearly shows no delays due to the prop- 

agation of travelling waves and no decay in the response due to evanescent waves 

at the coordinate of the collocated actuator-sensor pair. From Equation 2.14 and 

Equation 2.16, it is apparent that the transfer function has a slope of k~3 at all 

frequencies. 

The sensor output for the semi-infinite beam in Figure 2.4(a) can be derived as 

in the case of the infinite beam. This output is 

yps = w(0,t) 

yps=~^h[sinM+cosM] (2-17) 

where yps is the output of a point sensor on a semi-infinite beam. 

Since the input of the semi-infinite beam is at the left (finite) end, evanescent 

and travelling waves emanate only from the left end, and no reflecting waves exist. 

Equation 2.17 is proportional to the output of the infinite beam sensor, Equation 2.14, 

and again there are no artifacts of any spatial waves in the sensor output. 
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The actuator to sensor transfer function for the finite beam is 

np F 
ypf    _   _eu(sm(kl)-cos(kl)) + e-kl(sm{kl) + cos(kl)) (2 lg) 

^    " EIP[cos{kl)(ekl + e-kl) - 2] 

where yp{ is the output of a point sensor on a finite beam, and I is the beam length. 

The finite beam has a more complicated solution because the beam reflects waves 

at both ends. Since the length is finite, there are no time dependent terms and 

the effect of travelling waves and evanescent waves is understood directly from the 

transfer function. The explicit Ar3 in Equation 2.18 determines the slope of the high 

frequency transfer function. 

2.2.2     Moment Actuator and Slope Sensor 

Here, the behavior for a moment actuator and slope sensor pair on an infinite, semi- 

infinite, and finite free-free beam is determined. The free-free end conditions are 

chosen for the finite beam due to the similarity of the modeshapes to the displace- 

ment profiles of the infinite and semi-infinite beams. A moment input and slope 

measurement are used to model the moment actuator-sensor pair. The three cases 

are shown in Figure 2.6. The forcing function M(x,t) is assumed to be of the form 

mosin(wi)- Also, M = um, where um is the input of the moment actuator. The 

sensor output for the infinite and semi-infinite cases and the actuator-sensor trans- 

fer function for the finite case are determined in the same manner as for the point 

actuator-sensor pair. 
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(a) (b) (c) 

Figure 2.6:   Moment Actuator and Slope Sensor on (a) Infinite, (b) Semi- 
infinite, (c) Finite beam 

The displacement of the infinite beam due to the moment actuator is 

w(x,t) = < 

mn 

AEIk2 

m0 

sin(u>i + kx) — ekx sin(u;i) 

AEIV 
— s'm(ojt — kx) + e      sin(o;i) 

x <0 

x >0 
(2.19) 

Taking the derivative to determine the slope, the sensor output for the infinite 

beam case is 

2/mi   =   w'(0,t) 

2/mi 
m0 

AEIk 
[— cos(ujt) + sin(o'i)] (2.20) 

where y^ is the sensor output due to the moment input on an infinite beam. 

Again, the infinite beam has the simplest solution due to symmetry and the lack of 

reflecting waves. The sensor output again shows influence from the travelling waves 

or evanescent waves at the actuator-sensor coordinate, and it explicitly shows the 

rolloff is proportional to k"1. 
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The sensor output, i.e. slope, for the semi-infinite beam: 

2/ms = ™'(0,2) 

2/ms = -=77 [cos(wt) - sin(wt)] (2.21) 
Elk 

As before, evanescent and travelling waves emanate only from the left end, and 

no reflecting waves exist. The semi-infinite solution is very similar to the infinite 

solution, with no spatial dependence at all. The rolloff is again proportional to k'1. 

The actuator to sensor transfer function for the finite beam: 

S/mf w'(0,t) 

UT, M 
Vm£    __       e2kl(sin(kl) + cos(kl)) + sin(fe/) - cos(kl) 

um    _ EIk[cos{kl){e2kl + l)-2ekl] { '    ' 

where y^j is the output of the moment sensor on a finite beam, um is the moment 

input, and I is the beam length. 

The finite beam exhibits a more complicated solution due to the waves reflecting at 

both ends. Since the length is finite, the existence of travelling waves and evanescent 

waves is understood directly from the transfer function, and the high frequency rolloff 

is proportional to k"1. 

2.2.3     Rectangular Actuator and Sensor 

To demonstrate the complexity of solutions associated with shaped actuators and 

sensors, the sensor output for a rectangular actuator-sensor pair on an infinite beam 

is determined.    Figure 2.7(a) shows the coupled moment and difference of slopes 
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(a) (b) 

Figure 2.7:   Infinite   Beams   with   (a)   Rectangular   and   (b)   Triangular 
Actuator-Sensor Pairs 

measurements used to model the rectangular actuator-sensor pair. Since the actuator 

and sensor are collocated, la is the length of the actuator and the length of the sensor. 

The same solution algorithm is followed as in previous sections, and the sensor output 

is used to obtain insight into the case of the infinite beam. 

The sensor output for the infinite beam: 

2/ri = w'l ~ w'2 
(2.23) 

2/ri 
m0 

Elk 

.    (kla\   .    (  +^kla\^  .    (kla\   .    ( kla 
sm l — \ sm I art + —    + sm f — \ sm I w* - — 

lCia kla 
cos I — j COS I U)t -f -— I + cos 

e~kla sin(ait) + sin(a;i) 

kla \        I          kla 
—    cos   UJl —- 

(2.24) 

where yT\ is the output of the rectangular sensor on an infinite beam. Unlike the point 

and moment actuator-sensor pairs, Equation 2.24 shows the influence of travelling and 

evanescent waves in the solution for the rectangular actuator-sensor pair on an infinite 

beam.  This is due to the spatial distribution of the actuator-sensor pair.  Also, the 
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high frequency rolloff is explicitly proportional to k'1. 

2.2.4    Triangular Actuator and Sensor 

Here, the sensor output for a triangular actuator-sensor pair on an infinite beam is 

determined. Figure 2.7(b) shows the three force input and sum of displacements 

measurements used to model the triangular actuator-sensor pair on an infinite beam. 

The solution algorithm is the same as in previous sections, and again, the sensor 

output is used to obtain insight into the case of the infinite beam. 

The triangular sensor output for the infinite beam is 

2/ti = 2io2 -W1-W3 (2.25) 

= fs_ 
Vtl        2EIk3 

sin I — Jsinlwt-f — I +cosl — I cos I wt + — I 

+sin {^j sin (u* - fj 

+ (2 + cos (*±\\ cos Lt -!f)+ e-u' Bin(W0 

- [2sin (^A - l) sin^-^cos (^) - 2) cos(a,i) 

(2.26) 

where yti is the output of the triangular sensor on an infinite beam, and la is the 

length of the actuator-sensor pair. 

Equation 2.26 shows how increased complexity of the actuator-sensor shape in- 

creases the complexity of the solution. However, the travelling and evanescent wave 
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terms can still be seen, and the rolloff is proportional to ÄT3. 

2.3    Asymptotic Solution for Point and  Shaped 

Actuator-Sensor Pairs 

Using the wave solution method in Section 2.2, the analytical transfer function for 

various point and shaped actuator-sensor pairs can be found. Each of these transfer 

functions has a dereverberated transfer function associated with it which determines 

the general behavior of the transfer function. If the dereverberated transfer function is 

known, then an estimate of the crossover frequency and rate of rolloff of the transfer 

function can be found. Thus, the ability to alter the rolloff characteristics of the 

dereverberated transfer function implies an ability to alter the rolloff characteristics 

of the transfer function. This section determines the dereverberated transfer function 

for point and shaped actuator-sensor pairs, demonstrating how different actuator- 

sensor shapes affect the actuator to sensor transfer function. 

2.3.1     Methodology 

The methodology for determining the dereverberated transfer function is explained 

using examples of transfer functions for point and shaped actuator-sensor pairs on 

a pinned-pinned beam. The pinned-pinned end conditions are chosen due to the 

simplicity of the associated modeshapes. 

A point actuator-sensor pair at the center of a pinned-pinned beam of length I is 
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Figure 2.8: Pinned-Pinned Beam with Point Actuator-Sensor Pair 

shown in Figure 2.8. The analytical actuator input and sensor output are defined as 

up   =   F = /0sin(u;i) (2.27) 

yp   =   w(0,t) (2-28) 

The analytical actuator to sensor transfer function is 

UP =     e^(sin(M)-coS(f)) + e^(sin(|) + cos(f)) ^ 

up 4£/Pcos(f)(e^ +e~P) 

The dereverberated transfer function is composed of two asymptotes. The low 

frequency asymptote, which is the limit as k -» 0, and the high frequency asymptote, 

which is the limit as Jfe -»• oo. The low frequency asymptote is found by expanding 

the transfer function into a series. 

lim Ha.- i! l7f   k4 ^^—k8-Ok12        (2.30) 
i™   UD ~~     ASEI     80640£I 319334400E/ 

"p 

The first term of this series is the remaining term when k -> 0; this is the low 

asymptote. 

TPT      =   ~/3 (2.31) ipLow      ASEI V       ' 

The high frequency asymptote is found by taking the limit as k -* oo.  The mathe- 
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matical limit of Equation 2.29 as A; —> oo is 

yp       sin(f) - cos(f) 

&   ^=   AEIk*<*»{*) (2"32) 

The limit of the sinusoidal terms as k —* oo is between —1 and 1. To determine 

the high frequency asymptote, either —1 or 1 is substituted for sin(y) and cos(y) 

in Equation 2.32. When sin(f) = 1 and cos(f) = 1, or when sin(f) = -1 and 

cos(f) = -1, 

lim    ^ = 0 (2.33) 
k—»oo      lip 

When sin(f) = -1 and cos(f) = 1, or when sin(f) = 1 and cos(f) = -1, 

lim    ^=^73 (2.34) 

Only one of these solutions will fit the centerline of the high frequency transfer func- 

tion; this is the high frequency asymptote. Thus, 

TpHigh = ~2£IF (2-35) 

Figure 2.9 shows the two asymptotes of this dereverberated transfer function over- 

laid by the analytical transfer function of Equation 2.29, where El = 1,1 = 1. The low 

frequency asymptote matches the static behavior, and the high frequency asymptote 

fits nicely down the middle of the high frequency transfer function. The intercept of 

these two asymptotes is an estimate for the corner frequency of the transfer function. 

Table 2.1 shows the different values of 7PLOW and 7f>High when the collocated 

actuator-sensor pair is placed at different locations of the beam. This shows that 

as the actuator-sensor pair moves to different points on the beam, the low asymptote 



38 Chapter 2.   Analytical Models for Collocated Actuator-Sensor Pairs 

50 

-50 

no 
2. 
o> 

■D 
3 - 

c 
CO 

E 

■100 

-150- 

-200- 

-250 
10 

Asymptotes 
Analytical TF 

10 10 
wavenumber (k) 

10' 10° 

Figure 2.9:   Transfer Function for Point Actuator-Sensor Pair Centered on a 
Pinned-Pinned Beam 

Table 2.1:   Low and High Frequency Asymptotes for Point Actuator-Sensor 
Pair at Different Locations on a Pinned-Pinned Beam 

Position ^PLow ^PHigh 

I 
2~ 
I 

I 
4 
/ 
8 
/ 

10 

i3 

48EI 
4/3 

2AZE1 
3/3 

256EJ 
49Z3 

12288£7 
27Z3 

10000E7 

1 
2EIk3 

1 
2EIk3 

1 
2EIk3 

1 
2EIk3 

1 
2EIk3 
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decreases. This is due to the increased local static stiffness of the beam as the point 

actuator and sensor are moved closer to the pinned end. However, as the actuator- 

sensor pair are moved along the beam, the high asymptote remains the same as m 

Equation 2.35. At very high frequencies, the actuator-sensor pair will not change due 

to its proximity to beam end conditions. Thus, the intercept point is at a minimum 

when the forcing is at the middle of the beam, but there is no maximum. Also note 

that the high frequency rolloff is proportional to ÄT3, which is written explicitly in 

the denominator of the analytical transfer function, Equation 2.29. 

A rectangular actuator-sensor pair centered on a pinned-pinned beam of length 

/ and actuator-sensor length la is shown in Figure 2.10(a). The same method is 

used to determine the dereverberated transfer function of this system. The analytical 

actuator to sensor transfer function is 

Vl = *L  (2.36) 
uT      E/A;cos(f)(e^ + e^i) 

M -kl klg -klg / kl\        ■     I kl\ I kla \ 
where Af is a complicated function of e 2 , e 2 , e 2 , e 2 , cos(y), sin(_yj, cos^J, 

and sin(^). The complete analytical transfer function is listed in Appendix A. 

The asymptotes of the dereverberated transfer function for the collocated rectan- 

gular pair are 

7kw = -^ (2.37) 

W = Jj-k (2-38) 

From Equation 2.38, the high frequency rolloff is a function of ÄT1, which is written 

explicitly in the analytical transfer function, Equation 2.36. 

Figure 2.11 shows the two asymptotes overlaid by the analytical transfer function 
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Figure 2.10:   Pinned-Pinned Beams with Collocated Actuator-Sensor Pairs 
(a) Rectangular (b) Triangular 

in Equation 2.36, where El = 1,1 = 1, and /„ = ^. As the actuator-sensor pair moves 

to different locations on the beam, the analytical value of the asymptotes remain the 

same as in Equation 2.37 and Equation 2.38. However, as the size of the actuator 

and sensor decreases, the numerical value of the low asymptote decreases, increasing 

the intercept wavenumber. So, although the analytical value of the intercept point is 

constant, the numerical value decreases with decreasing actuator-sensor length. This 

implies that the minimum intercept occurs when the rectangular actuator and sensor 

cover the entire beam. This concurs with physical intuition since the sensor rolls off 

at the largest wavelength modes, which are the lowest frequency modes. However, it 

should be noted that when the actuator length is as low as 6.7% of the beam length, 

the intercept is still near the second pole of the transfer function. 

A triangular actuator-sensor pair centered on a pinned-pinned beam of length I 

and actuator-sensor length la is shown in Figure 2.10(b). The dereverberated transfer 

function is determined in the same manner as the previous cases.    The analytical 
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Figure 2.11:   Transfer Function for Rectangular Actuator-Sensor Pair on a 
Pinned-Pinned Beam, la = 6.67%/ 

actuator to sensor transfer function is 

Vt M 
ut      £/Jb3cos(f)(e^ + e—) 

(2.39) 

where AT is a function of e*, e^, e^, e^T*, cos(f), sin(|), cos(^), and sin(^), 

and is more complicated than the rectangular analytical transfer function. The com- 

plete analytical transfer function can be found in Appendix A. 

The asymptotes of the dereverberated transfer function for the triangular actuator- 
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Figure 2.12:   Transfer Function for Triangular Actuator-Sensor Pair on a 
Pinned-Pinned Beam, la = 6.67%/ 

sensor pair are 

^TLow 

^THigh 

11 
Y1EI 

5 

2EIk3 

(2.40) 

(2.41) 

The high frequency rolloff of the triangular actuator to sensor transfer function is a 

function of *T3. This is written explicitly in the analytical transfer function, Equa- 

tion 2.39. 

Figure 2.12 shows the analytical transfer function of Equation 2.39 overlaid by the 

two dereverberated asymptotes where El = 1,1 = 1, and la = ^. As in the rectangu- 
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Figure 2.13:   Pinned-Pinned Beams with Collocated Actuator-Sensor Pairs 
(a) Quadratic (b) Cubic 

lar case, when the triangular actuator-sensor pair moves to different locations on the 

beam, the analytical value of the asymptotes remains the same. Also, as the size of 

the actuator and sensor decreases, the value of the low asymptote decreases, increas- 

ing the intercept wavenumber. Therefore, the numerical value of the low frequency 

asymptote decreases with decreasing actuator-sensor length. 

As in the rectangular case, the minimum intercept occurs when the distributed ac- 

tuator and sensor cover the entire beam. However, since the low frequency asymptote 

of the triangular sensor is a function of /3 instead of I, the intercept of the asymptotes 

is much higher in frequency for a triangular actuator-sensor pair than the rectangular 

actuator-sensor pair. For example, when the rectangular actuator-sensor pair covers 

6.7% the entire beam, as in the Figure 2.11, the intercept occurs near the second pole. 

However, when the triangular pair covers the same length, as in the Figure 2.12, the 

intercept is near the eighth pole of the transfer function, a difference of nearly 40 in 

k. 

A quadratic actuator-sensor pair centered on a pinned-pinned beam of length I 
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and actuator-sensor length la is shown in Figure 2.13(a). The analytical actuator to 

sensor transfer function is 

y* M-2klacos{f)(ekl-l) 
(2.42) 

uq EIk5cos(f){ekl + l) 

where M is a function of exponential and sinusoidal terms more complicated than the 

triangular analytical transfer function. The complete transfer function for this case 

is also found in Appendix A. 

The asymptotes of the dereverberated transfer function are determined using the 

same method as in previous cases. These asymptotes are 

T — ° (2 43) 
JQLOW   -    X5360EJ ^ '    ' 

The high frequency rolloff of the quadratic is a function of AT4. However, this is 

not written explicitly in the denominator of the analytical transfer function. Instead, 

the denominator is a function of k5 and the numerator is a function of k, which 

mathematically limits the rolloff to a function of A;-4. 

This conclusion can be reached by considering the phase of the actuator to sensor 

transfer function. In the collocated case, the phase will always be between 0° and 

-180°. In the worst case, -180° of phase, the system rolls off as a function of 

k~4. Therefore, as long as the actuator-sensor pair are collocated, the dereverberated 

transfer function cannot rolloff faster than fc~4. 

Figure 2.14 shows the analytical transfer function of Equation 2.42 and the two 

dereverberated asymptotes, where El = 1, / = 1, and la = ^. As in the rectangular 

and triangular cases, when the quadratic actuator-sensor pair moves to different lo- 
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Figure 2.14:   Transfer Function for Quadratic Actuator-Sensor Pair on a 
Pinned-Pinned Beam 

cations on the beam, the analytical value of the asymptotes remains the same. The 

characteristics of the intercept frequency are the same as in the rectangular and tri- 

angular cases as well. The numerical value of the low frequency asymptote decreases 

with decreasing actuator-sensor length. Once again, the minimum intercept occurs 

when the distributed actuator and sensor cover the entire beam. However, in the 

quadratic case the low frequency asymptote is a function of I5. As a result, the in- 

tercept of the asymptotes of a quadratic pair is higher in frequency than that of a 

triangular or rectangular actuator-sensor pair of the same length. As seen in Fig- 

ure 2.14, the intercept of the asymptotes is near the 13th pole which is much higher 

than the triangular and rectangular transfer functions. 
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A cubic actuator-sensor pair centered on a pinned-pinned beam of length I and 

actuator-sensor length la is shown in Figure 2.13(b). The analytical actuator to sensor 

transfer function is 
»/•   ,    7.3 73 fkl\t„kl    i    1 > 

(2.45) 
yc      Af+k3l3

acos(k{)(ekl + l) 

^= Elk7 cos(f)(ew + l) 

where Af is a function of exponential and sinusoidal terms more complicated than the 

quadratic analytical transfer function. The complete analytical transfer function is 

listed in Appendix A. 

The asymptotes for the cubic case are: 

TCL       =    -     4021/I (2-46) CLow 660602880£/ 
I3 

TcHigh   =   T92El¥ {2A7) 

The high frequency rolloff of the cubic is a function of AT4. However, as in the 

quadratic case this is not written explicitly in the denominator of the analytical 

transfer function. Instead, the denominator is a function of k7 and the numerator is 

a function of k3, which mathematically limits the rolloff to a function of A;-4. Again, 

this result concurs with the natural physical limits of the system. 

Figure 2.15 shows the two dereverberated asymptotes and the analytical transfer 

function in Equation 2.45, where El = 1,1 = 1, and la = ^. The intercept of 

the asymptotes of this transfer function is near the 13th pole of the system. As 

in previous cases, the analytical value of the asymptotes remains the same, when 

the cubic actuator-sensor pair moves to different locations on the beam. Also, the 

numerical value of the low frequency asymptote decreases with decreasing actuator- 

sensor length. The minimum intercept occurs when the distributed actuator and 

sensor cover the entire beam.   In the cubic case, the low frequency asymptote is a 
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Figure 2.15:   Transfer Function for Cubic Actuator-Sensor Pair on a Pinned- 
Pinned Beam 

function of lr. However, since the high frequency asymptote is a function of Z3, the 

intercept for the cubic dereverberated transfer function is nearly the same as the 

intercept for the quadratic case. This is due to the rolloff limitation of k~4 which is 

naturally set for the system. 

These examples show that any shape more complex than a quadratic will not 

contribute additional rolloff to the system, since the rolloff is physically limited to 

A:-4. Additionally, the manufacturing of a shape more complex than the triangular 

is very difficult, further limiting the benefits of using these shapes. Therefore, there 

will be no further investigation of shapes more complex than triangular. 
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2.3.2     Correlation  of Asymptotes  using  Modal   Residue 

Solution 

In order to confirm that the asymptotes of the wave solution are correct, another mod- 

elling technique is used to determine the transfer functions and their dereverberated 

solutions. The modal residue solution uses a Rayleigh-Ritz solution of a Bernoulli- 

Euler beam [17], assuming the modes of a pinned-pinned beam to be sin^2^), where 

n is the mode number and / is the length of the beam [4]. 

The modal solution for the transfer function from point actuator to point sensor 

centered on a pinned-pinned beam is 

v         °°   -2sin2fe) ,       N 
^E = V V 2 J 2.48 

2        / rnut 
where the natural wavenumber is kn = y   F jn ■ 

To determine the dereverberated transfer function, the contributions of each mode 

is reduced to that of an asymptotic Bode plot. 

2 sin2   — 
 \   I   J h < h 

lEIk* ~   n 

(2.49) 

2sm2( — 
2-L    k> kn 

u UP 71=1 

lEItf 

Approximately 1000 of these dereverberated modes are summed to generate the modal 

solution dereverberated transfer function. This solution compares favorably to the 

asymptotic wave solution in Figure 2.16; the low frequency asymptote is nearly exact 

and the high frequency asymptote is very close. 
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Figure 2.16:   Modal Residue Solution vs. Dereverberated Wave Model for a 
Point Actuator-Sensor Pair Centered on a Pinned-Pinned Beam 

The method for finding the dereverberated transfer functions for the shaped 

actuator-sensor pairs is the same as for the point actuator-sensor pair. The modal 

solution of the transfer function for a rectangular actuator and sensor centered on a 

pinned-pinned beam is 

L = E 
to V («»•(¥)-!)(«■• (=$*)-') 

n=l PEI^ - A£) 
(2.50) 

The modal solution for the triangular actuator to sensor transfer function is 

(2.51) 
lEI(k* - A;«) 

The modal solution of the transfer function for the quadratic actuator-sensor pair is 
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Figure 2.17: Modal Residue Solution and Dereverberated Wave Solution 
where la = 6.67%/ on Pinned-Pinned Beam (a) Rectangular 
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Vq = £ 
-8/(cos2(¥)-l)(cos2(^)+4cos2(^)+4sin(^)sin(^)-5) 

uq     ^ nVEI(k* - k*) 
(2.52) 

The modal solution of the transfer function for the cubic actuator-sensor pair is 

U>(m>{t?) - l) (2cos(^) - cos(^) - 2cos(^) + l)' 

(2.53) 
uc     ^ n47r4E/(Ä;4 - Jfc*) 

The dereverberated modal transfer functions of the shaped actuator-sensor pairs 

are determined using the same algorithm as the point actuator-sensor pair. These 

transfer functions are compared to the asymptotic wave solution in Figures 2.17 and 2.18. 

These four plots show that the two solution methods match very well at low fre- 

quency. At high frequency, the correlation of the modal solution asymptote to the 

wave solution asymptote increases as the actuator-sensor shape increases in complex- 

ity. While the correlation of the asymptotes for the simpler shapes is not as precise 

as the more complex shapes, these results are accurate enough to confirm the results 

of the wave solutions. 

2.3.3     Asymptotes for Various End Conditions 

Table 2.2 summarizes the low frequency and high frequency asymptotes for differ- 

ent shaped actuator-sensor pairs on a pinned-pinned beam. The value for the low 

frequency asymptote of the point actuator to sensor transfer function corresponds 

to actuator-sensor placement at the center of the beam. The asymptotes for the 

shaped actuator-sensor pairs are independent of their placement on the beam. Ta- 

ble 2.3 and Table 2.4 summarize the same information for cantilevered and free-free 
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Table 2.2: Low and High Frequency Asymptotes for a Pinned-Pinned Beam 

Shape Low High 

Point 

Rectangular 

Triangular 

J3 

A8E1 

El 
ll 

12E1 

1 
2EIk3 

1 
2EIk 

5 
2EIk3 

Table 2.3: Low and High Frequency Asymptotes for a Cantilevered Beam 

Shape Low High 

Point 

Rectangular 

Triangular 

I3 

2AE1 
JL 
El 
I3 

12EI 

1 
AEIk3 

1 
2EIk 

5 
2EIk3 

end conditions. 

From these three tables, it is evident that for a point actuator-sensor pair, the 

low frequency asymptote is dependent upon beam location and beam end conditions, 

which is due to a local beam stiffness effect. Discounting singularities, the high fre- 

quency asymptote is not dependent upon its location on the beam. However, it is 

dependent upon the specific beam end conditions due to the effects of evanescent 

Table 2.4: Low and High Frequency Asymptotes for a Free-Free Beam 

Shape Low High 

Point 

Rectangular 

Triangular 

1 1 
lEIk4 

L 
El 
I3 

12EI 

AEIk3 

1 
2EIk 

5 
2EIk3 



54 Chapter 2.    Analytical Models for Collocated Actuator-Sensor Pairs 

waves. The low frequency and high frequency asymptotes of all shaped actuator to 

sensor transfer functions are the same regardless of beam placement and end con- 

ditions, as long as there are no singularities and the end conditions are statically 

determinate. 

2.4    Discussion 

This chapter has discussed the modelling of Bernoulli-Euler beams with point and 

shaped actuator-sensor pairs. The dereverberated transfer functions for several cases 

were determined, and several insights were gained. First, it is possible to use different 

shapes of actuator-sensor pairs to shape the dereverberated transfer function of the 

plant. The rolloff of the point actuator-sensor pair is proportional to k~3, the rolloff of 

the rectangular actuator-sensor pair is proportional to AT1, the rolloff of the triangular 

actuator-sensor pair is proportional to ÄT3, the rolloff of the quadratic actuator-sensor 

pair is proportional to AT4, and the rolloff of the cubic actuator-sensor pair is also 

proportional to k~\ Note, there is a limit of fc~4 for rolloff that is obtainable. Also, 

as the shapes become more complex, the corner frequency at which the transfer func- 

tion begins to roll off increases. There are also limitations which make shapes more 

complex than triangular difficult to manufacture. Additionally, the point actuator to 

sensor dereverberated transfer function changes depending upon the location of the 

actuator-sensor pair and the end conditions of the beam. The shaped actuator to 

sensor dereverberated transfer functions are the same regardless of its location on the 

beam and regardless of the beam end conditions, if those end conditions are statically 

determinate. 

From these observations, general rules can be stated for any transfer function of 
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a collocated actuator-sensor pair on a beam. If the type of actuator-sensor pair is 

known, the rate of rolloff is known as well. When distributed shaped sensors are 

used, the intercept is known, and the crossover frequency can be estimated. It is 

not necessary to know the exact location of the actuator-sensor pair to understand 

behavior of the transfer function. Thus, an appropriate actuator-sensor pair can be 

chosen for certain plant transfer function characteristics. Finally, the benefits of using 

shapes more complex than triangular do not outweigh the associated costs. Therefore, 

they should not be considered. 



Chapter 3 

Analytical Models for Noncollocated 
Actuator-Sensor Pairs 

In this chapter, transfer functions of point and shaped noncollocated actuator-sensor 

pairs on a Bernoulli-Euler beam are derived. As with collocated sensors and actua- 

tors, wave solutions are employed, and subsequently the underlying physics in these 

relations is examined. The characteristics of the dereverberated transfer functions are 

investigated, and the effect of noncollocation of actuator-sensor pairs is considered. 

3.1     Wave Solution for Simple Transfer Functions 

In order to obtain insight into the physical significance of the noncollocated actuator 

to sensor transfer functions, a few mathematically simple examples are solved. These 

include a point force actuator-sensor pair on an infinite, semi-infinite, and finite free- 

free beam, as well as a moment actuator-sensor pair on an infinite, semi-infinite, and 

finite free-free beam. The free-free end conditions are chosen for their similarity to the 

infinite and semi-infinite beams. These results are then compared to the collocated 

results found in Chapter 2. 

57 
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Figure 3.1:   Noncollocated   Point   Actuator-Sensor   Pairs   on   (a)   Infinite, 
(b) Semi-infinite, (c) Finite beam 

3.1.1     Point Actuator and Sensor 

The behavior of a noncollocated point actuator-sensor pair on an infinite, semi- 

infinite, and finite free-free beam is determined using the solution method in Sec- 

tion 2.2. A point force and displacement measurement are used to model the point 

actuator-sensor pair; Figure 3.1 shows these three cases. The forcing function F(x,t) 

is assumed to be of the form f0sm(ut). The variable xt is the distance from the 

actuator to the sensor. 

As in Section 2.2, the physical insights of the infinite and semi-infinite cases come 

from the sensor output, and the physical insights of the finite beam are obtained from 

the actuator to sensor transfer function. 

The sensor output (displacement) for the infinite case is 

2/pin 

2/pin 

W (z„i) 

AEIk3 

--^ AEIk3 

cos(u;t + kxa) + ekXs sm(u)t) 

cos(wi — kxs) + e kXs s'm(iut) 

x<0 

x > 0 
[3.1) 
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where ypm is the output of a point sensor on an infinite beam, where the actuator and 

sensor are noncollocated. 

If xs = 0, then Equation 3.1 is the collocated result found in Equation 2.14. The 

simplicity of the infinite solution is due to symmetry and the lack of reflecting waves. 

The sensor output clearly shows the effect of travelling waves and evanescent waves 

upon the beam. 

The sensor output for the semi-infinite beam is 

ypSn = w(xs,t) 

i/psn = ~2EJtf M^ - kx>"> + cos(a;i ~ kx'"> + e_fcXj(sin(^) + cos(wt))] (3.2) 

where ypsn is the output of a point sensor on a semi-infinite beam, where the actuator 

and sensor are noncollocated. 

Substituting x„ — 0 in Equation 3.2 confirms the collocated results of Equa- 

tion 2.17. Since the input of the semi-infinite beam is at the left (finite) end, evanes- 

cent and travelling waves emanate only from the left end, and no reflecting waves 

exist. Equation 3.2 is more complicated than the infinite beam sensor output, but, 

the effect of the travelling waves and evanescent waves is easily discernible. 

The actuator to sensor transfer function for the finite beam is 

Z/pfn w(xs,t) 

c 
2EIk* (cos(kl)(ekl + e~kl) - 2) 
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2/pfa _ fi cos {kxs)(e
kl(sin(kl) - cos(kl)) + e-

k\sm(kl) + cos(kl)) 

- sm{kxs)(e
kl(sm(kl) + cos(H)) + e"fc'(- sin(M) + cos(fc/)) - 2) 

+ ekx'(e-kl(sm(kl) + cos(kl)) - 1) 

+ e-kx'(ek\sm(kl) - cos(W)) + 1) (3-3) 

where I is the beam length, and ypin is the output of a point sensor on a finite beam, 

when the actuator and sensor are noncollocated. 

The finite beam has a very complicated solution because the it experiences re- 

flecting and evanescent waves from both ends. Since the length is finite, there are 

no time dependent terms and the effect of travelling waves and evanescent waves is 

understood directly from the transfer function. Again, if xs = 0 is substituted into 

Equation 3.3, then the transfer function simplifies to the simpler collocated transfer 

function found in Equation 2.18. 

3.1.2     Transfer Function Relationship to a Pinned Boundary 

Condition 

Consider the case of a collocated point actuator-sensor pair on a finite beam. A known 

relationship exists between the zeros of the actuator to sensor transfer function and 

the poles of the transfer function when a the actuator-sensor pair are replaced with 

a pinned boundary condition. This subsection investigates whether there is a similar 

relationship in the noncollocated case. 

Two beams are pictured in Figure 3.2, the first was discussed Section 2.2.1, while 

the second beam was discussed in Section 3.1.1.   From Equation 2.18 the transfer 



3.1.   Wave Solution for Simple Transfer Functions 61 

f w 

/ 
F 

xs 

X 

(a) (b) 

Figure 3.2:   Free-Free Beams with (a) Collocated, (b) Noncollocated Point 
Actuator-Sensor Pairs 

function for the collocated actuator-sensor pair in Figure 3.2(a) is 

2/pf 

u„ 

ekl{sm(kl) - cos^Q) + e-fc*(sin(fcQ + cos(fcZ)) 

EIk3[cos(kl){ekl + e~kl) - 2] 
(3.4) 

where I is the beam length. 

The effect of high gain control on a collocated transfer function is now considered. 

A proportional controller, with gain /C, is included and the loop is closed. When 

K, —» oo the poles of the closed loop transfer function move to the open loop zeros, 

i.e. the zeros of Equation 3.4. The poles of the closed loop transfer function are now 

defined as the values of A; where 

0 = ekl(sm(kl) - cos(Jb/)) + e-k\sm(kl) + cos(fcZ)) (3.5) 

This is the same equation which defines the poles of a beam with a free end at x = I 

and a pin at x = 0, the position of the actuator-sensor pair in Figure 3.2(a). Thus as 

the gain of the controller increases, the location of the actuator-sensor pair becomes 

infinitely stiff. 

The same procedure can be followed in the noncollocated case, Figure 3.2(b). 
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As K.  —>  co, the poles of the closed loop transfer function move to the zeros of 

Equation 3.3. The high gain closed loop poles are defined as the values of k where 

0 = cos(kxs){ekl{sm(kl) - cos(kl)) + e-kl(sin(kl) + cos(kl)) 

- sm(kxs)(e
kl(sm(kl) + cos(JbZ)) + e~k\~ sHkl) + cos(W)) - 2) 

+ ekx>(e-kl(sm(kl) + cos(kl) - 1) 

+ e-kx'(ekl(sm(kl) - cos(kl) + 1) (3-6) 

The poles of a system where the location of the actuator is pinned are the same 

as the poles in the collocated case, as in Equation 3.5. The poles of a system where 

the location of the sensor at xs is pinned are defined as the values of k where 

0 = 2 cos(M)     e"H (ekXl (sin(^xs) - cos(kxsj) - cos2(kx3 

+ ekl ( e~kx' (sin(Ä;xs) + cos(kxs)J + cos2(kxs 

+2sm(kl) 
1 1  \ 

e-ki Lkxa j^_ sin(^Xä) _ cos(&xs) - -e
kXs) - cos(kxs) sm(kxs) - -J 

1 1   \ 

+ ekl (e~kXl (sin(ibx,) - cos(Ä;xs) - -e~kx°) + cos{kxs) sm(kxs) - -J 

+2cos()b/)  [ ekx' -e~kx 

+2sin(A/) — e      — e (3.7) 

Table 3.1 lists kTp, the values of k which are the zeros of the noncoliocated 

actuator-sensor transfer function in Equation 3.6. Also listed is kActpin, the values of 

k which are the poles of the beam in Figure 3.2(b) with a pin at the location of the 

actuator, as in Equation 3.5. Finally, the table lists fcSen«Pm, the values of k which are 

the poles of the beam in Figure 3.2(b) with a pin at the location of the sensor, as in 
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Table 3.1:   Values of k for Poles of Beams with Pinned Boundaries and Zeros 
of Noncollocated Point Actuator-Sensor Transfer Function 

&TF ^ActPin ^SensPin 

4.592 3.926 4.706 

8.611 7.068 7.225 

12.703 10.210 9.737 

16.698 13.352 13.314 

20.633 16.493 17.031 

Equation 3.7. From this table, it is obvious that neither a pin at the actuator, nor a 

pin at the sensor models the noncollocated system with high gain. 

Another way to consider the noncollocated system is using the s-domain transfer 

function. It is obvious that at some high frequency the deflection of the beam at the 

point of the sensor will be opposite to direction of the force. Therefore, the s-domain 

transfer function must have nonminimum phase zeros. This implies that with high 

static gain, K, —> oo, the system will go unstable. Thus, there is no simple boundary 

which replicates the poles of the noncollocated case, as there is in the collocated 

problem. 

3.1.3     Moment Actuator and Slope Sensor 

The behavior for a noncollocated moment actuator and slope sensor on an infinite, 

semi-infinite, and finite free-free beam is determined using the wave solution. A 

moment input and slope measurement are used to model the moment actuator-sensor 

pair; Figure 3.3 shows these three cases. The forcing function M(x,t) is assumed to 

be of the form mosin(u;£). The dimension xs is the distance from the actuator to the 
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Figure 3.3:   Noncollocated Moment Actuator and Slope Sensor on (a) Infi- 
nite, (b) Semi-infinite, (c) Finite beam 

sensor. The sensor output for the infinite and semi-infinite cases and the actuator- 

sensor transfer function for the finite case are determined in the same manner as for 

the point actuator-sensor pair. 

The slope sensor output for the infinite case is 

2/min     =     w'(xs,t) 

4^ [- cos(o;i + kx.) + ekx' sin(wi)] ,     xs < 0 

- cos(cut - kxa) + e~kx' sin(art)   ,   xa > 0 
=    < 

I   lEIk 

(3.8) 

where y^n is the output of the slope sensor when there is a moment input on an 

infinite beam, where the actuator and sensor are noncollocated. 

Substituting xs = 0 confirms the solution for the collocated case found in Equa- 

tion 2.20. Again, the simplicity of the infinite solution is due to symmetry and the 

lack of reflecting waves. The slope sensor output clearly shows the effect of travelling 

waves and evanescent waves upon the beam. 

The slope sensor output for the semi-infinite beam is 

ymsn = w'(xs,t] 
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m0 

2ETk L 
cos(cji - kxs) - sin(a>i - kxs) + e kXa(cos(u>t) - sin(u;i))]    (3.9) 

Substituting xs = 0 in Equation 3.9 confirms the collocated results of Equation 2.21. 

As before, evanescent and travelling waves emanate only from the left end, and no 

reflecting waves exist. Although the semi-infinite solution has more terms than the 

infinite solution, the travelling waves and evanescent waves are easily identified. 

The actuator to sensor transfer function for the finite beam is 

2/mfn w '(*.,*) 
Ur, M 

D   = 
2£JÄ;(cos(Ä;Z)(e2fci + l)-2efc') 

2/mfn 

Ur, 
= D cos (kxs)((l - e2kl) cos(fcZ) 4- (-1 - e2kl) sm(kl)) 

- sm(kxa){(e2kl + 1) cos(kl) + (1 - e2kl) sm{kl) - 2ekl) 

+ e-
fc-(-e2H(sm(A:0 + cos(Jbl)) + e^) 

+ ekx'(-sm(kl) + cos{kl)-ekl) (3.10) 

The finite beam has the most complicated solution due to the reflecting and 

evanescent waves from both ends. Since the length is finite, the effect of travelling 

waves and evanescent waves is understood directly from the transfer function. Again, 

the transfer function simplifies to the collocated transfer function, Equation 2.22, 

when x. = 0. 
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Figure 3.4:   Noncollocated Point Actuator-Sensor Pair on a Pinned-Pinned 
Beam 

3.2     Noncollocated Point Actuator-Sensor Pairs 

In this section, the noncollocated point actuator-sensor transfer functions are consid- 

ered. As in Chapter 2 the dereverberated transfer function determines the general 

behavior of the analytical transfer function. Knowing the dereverberated transfer 

function allows for an estimate of the crossover frequency and rate of rolloff of the 

analytical transfer function. The procedure of Section 2.3 is used to find the dere- 

verberated transfer function for the noncollocated point actuator-sensor pair. The 

transfer function is then compared to the collocated case, and a quantitative measure 

of how the transfer function is affected by the noncollocation is discussed. 

Figure 3.4 shows a pinned-pinned beam with a noncollocated point actuator- 

sensor pair, where the actuator is centered on the beam and the sensor is xs from the 

actuator. The pinned end conditions are chosen due to the simplicity of the associated 

modeshapes. There are two transfer functions for this beam: xs is positive, i.e. the 

sensor is to the right of the actuator, and xs is negative, i.e. the sensor is to the left 

of the actuator. 
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The analytical actuator to sensor transfer function when x„ > 0 is 

2/pn 

G 

w(x3,t) 

AEIk3 (cos(f)(elfc' + e-*w)) 
(3.11) 

2/pn G 
UT. 

cos(kxa){sm( — )(-e*kl- 

+ sin(Ä;a;Ä)f cosf — j f 

e"»w 

It;   ,     —IfcZ 

+ cos ^kl    —kx3   __   g— jKfgKXj 

When x5 < 0, the analytical transfer function is 

?/pn _ ^ 

ur 

■   fkl\f     ikl       _ikl 
in    —     I -P2*1 — (=    2"' cos(&2s)( sinf — j ( 

+ sin(Ä!2!s)[cos(—J f- 
Ifc; -It/ 

e2
fc' — e  2 

+ cos^H^e^'-e-^e-**' 

(3.12) 

(3.13) 

Substituting x — 0 into these two equations results in Equation 2.29, the collocated 

transfer function. 

Table 3.2 shows the different values of the asymptotes of the dereverberated trans- 

fer function when the actuator is placed at different points on the beam and xa is 

positive. Table 3.3 shows the different values of the asymptotes of the dereverberated 

transfer function when the actuator is placed at different points on the beam and xs 

is negative. 7RtLow and 7RtHigh are the asymptotes when xs is positive, and "JLtLow and 

7£tHigh are the asymptotes when xs is negative. Note that if xs — 0, then the value 
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Table 3.2:   Low and High Frequency Asymptotes for Different Placement of 
Point Actuator and Noncollocated Point Sensor; xs Is Positive 

Position ^RtLow ^RtHigh 

I 
2 
I 
5 

I 
TÜ 

I 
25 

I3 + Ax3 - 6lxi 
A8E1 

9l3 + 2Al2xs - 72lx2, + 32x3 

768E1 
81/3 - 13501x1 + 500x3 + 720Z2xs 

1 
AEIk3 

1 
AEIk3 

1 
30000^7 

1152Z3 + 15625x3 + 27600I2xs - 45000/x3 
AEIk3 

1 
2343750£J AEIk3 

Table 3.3:   Low and High Frequency Asymptotes for Different Placement of 
Point Actuator and Noncollocated Point Sensor; xs Is Negative 

Position -'LtLow 7£tHigh 

I 
2 
/ 
4 
/ 

TÜ 

I 
25 

I3 - Ax3 - 6lx2, 
ASEI 

3I3 + 8l2xs - 24/x2 + 32z3. 
256E1 

-2713 - 450/x2 + 1500x3 + 240/2x, 

1 
AEIk3 

1 
AEIk3 

1 
10000 El 

19213 + 62500x3 + 46002xs - 7496Zx3 
AEIk3 

1 
390625^'i AEIk3 

of the low asymptote is equal to the collocated low asymptote found in Table 2.1. 

The high frequency asymptote is 7^jgh = A Jr.3 for the noncollocated case re- 

gardless of actuator position, which is lower than the high frequency asymptote for 

the collocated case, THish = 0Fr,3. This small shift down occurs due to the effect of 

the evanescent waves between the actuator and sensor. 

Two facts about the noncollocated point actuator-sensor pair are notable: the first 

is that the point actuator-sensor pair, regardless of their proximity to each other, will 

roll off as a function of k~3. Second, only in the case of analytically perfect collocation 
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Figure 3.5:   Transfer   Functions   for   Collocated   and   Noncollocated   Point 
Actuator-Sensor Pairs on a Pinned-Pinned Beam 

Even an infinitesimal degree of noncollocation will cause the change •   T        -        1 ISiHigh-  2£JA,3' 

to Tffigh = IEW • 
Figure 3.5 shows the analytical transfer functions of a collocated point actuator- 

sensor pair centered on a pinned-pinned beam and a noncollocated point actuator- 

sensor pair with the actuator at the center and the sensor is offset by 3% of the beam 

length, i.e. xa — 0.03/. Note how the two match very closely until the noncollocated 

transfer function loses a zero at k « 50. This is the wavenumber of noncollocation,i.e. 

knon äS 50, where the wavenumber is sufficiently large that the deflection at the 

location of the sensor and the deflection at the location of the actuator have opposite 

signs.  This is shown in Figure 3.6, where x is the position of the actuator and o is 
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Figure 3.6:   Pinned-Pinned Modeshapes for Beam of Length / = 1 (a) 15th 
Mode and (b) 17th Mode 

the position of the sensor. 

Also, when the actuator is in the center of a pinned-pinned beam, symmetry allows 

for an analytical expression relating the wavenumber of noncollocation, Ä^on, and the 

distance from the actuator to the sensor, xs. 

""no 
7T 

(3.14) 

For the preceding example, where xs = 0.03/, the wavenumber of noncollocation is 

kn0n f« 52.36, which correlates with Figure 3.5. 

Thus, at the wavenumber of noncollocation the transfer function has its first 

missing zero, and the high frequency asymptote changes from the collocated value 

to the noncollocated value. Figure 3.7 illustrates this point with the noncollocated 

transfer function of Figure 3.5 with the low asymptote, collocated high asymptote, 

and noncollocated high asymptote. 
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Figure 3.7:   Analytical and Dereverberated Transfer Functions for Noncollo- 
cated Point Actuator-Sensor Pair on a Pinned-Pinned Beam 

3.3    Noncollocated Shaped Actuator-Sensor Pairs 

In this section, noncollocated transfer functions for rectangular and triangular actuator- 

sensor pairs are considered. The aspect of noncollocation is limited to a sensor of 

different length than the actuator; the centroid of the actuator-sensor pair remains 

collocated. Two cases are considered for each shape: in the first the sensor is shorter 

than the actuator, and in the second the sensor is longer than the actuator. The 

dereverberated transfer functions for both shapes are determined and compared to 

the collocated results of Chapter 2. Also, an investigation is conducted to determine 

the most reasonable and best performing actuator and sensor lengths. 
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(a) (b) 

Figure 3.8:   Noncollocated   Rectangular   Actuator-Sensor   Pair   (a)   Sensor 
Shorter than Actuator (b) Sensor Longer than Actuator 

Table 3.4:   Low and High Frequency Asymptotes for Noncollocated Rectan- 
gular Actuator-Sensor Pairs on a Pinned-Pinned Beam 

-^RLow ^RHigh 

h < la 

h > la 

El 

El 

1 
Elk 

1 
Elk 

3.3.1     Rectangular Actuator-Sensor Pairs 

Figure 3.8(a) shows a rectangular actuator-sensor pair where the sensor is shorter 

than the actuator, and Figure 3.8(b) shows a rectangular actuator-sensor pair where 

the sensor is longer than the actuator. The duality of the actuator-sensor pair is such 

that if la = x and lt — y, the transfer function is identical when la = y and lt = x. 

The procedure of Section 2.3 is used to find the dereverberated transfer function 

for the noncollocated rectangular actuator-sensor pair. The dereverberated transfer 

function is determined for both cases shown in Figure 3.8 and for varying actuator 

placement. Table 3.4 shows the values of the low and high frequency asymptotes 

when the sensor is longer than the actuator and when the sensor is shorter than the 
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actuator.   These asymptotes hold regardless of the position of the actuator on the 

pinned-pinned beam. 

Note that if /, = la, then the value of the low asymptote is equal to the collocated 

low asymptote in Equation 2.37. Also, the noncollocated low asymptote is actually 

controlled by the smaller of the two dimensions ls and la. The most important ob- 

servation, however, is that for a rectangular actuator-sensor pair, regardless of the 

placement on the beam or their relative size, the rolloff will be a function of ÄT1. 

The contrast in the noncollocated rectangular actuator-sensor pair is of the same 

form as the point case; there is a difference in high frequency asymptotes between 

the collocated and noncollocated cases. The high frequency asymptote for the non- 

collocated case is TRNHigh = -pyr regardless of actuator position or sensor size, while 

the high frequency asymptote for the collocated case is 7RHigh = oEIk' ^^s means 

that the noncollocated transfer function actually shifts upward, unlike the case of the 

noncollocated point actuator-sensor pair. The magnitude lowering effect from the 

evanescent waves is not as strong as the magnitude rising effect due to the numerous 

missing zeros in the transfer function. Therefore, the transfer function shifts upward. 

Since the transfer function follows the noncollocated high asymptote due to the 

occurrence of many missing zeros, a very noncollocated case will show the shift upward 

more effectively. For visual purposes, an extreme case is shown in Figure 3.9, where 

the actuator is centered on the beam and la = 0.5/ and la = 0.051. 

In an effort to quantify the effects of length noncollocation on the transfer function 

of a rectangular actuator-sensor pair on a pinned-pinned beam, Figure 3.10 shows the 

pole-zero patterns when la = 0.21 and the value of ls varies such that the ratio of ls : la 

is the value on the horizontal axis. Figure 3.11 is a similar plot; however, la = 0.4/ in 

this case. These plots show no consistent, quantifiable change in the pole-zero spacing 
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Figure 3.9: Analytical and Dereverberated Transfer Functions for Noncol- 
located Rectangular Actuator-Sensor Pair on a Pinned-Pinned 

Beam; ls = 0.5/, /„ = 0.05/ 

with a small difference in the sensor length. However, both of these plots show that 

a missing zero occurs fairly early when the actuator and sensor are not of the same 

dimension. As the difference between length of actuator and sensor increases, the 

wavenumber of the first missing zero in the noncollocated transfer function decreases. 

The rule of thumb stated in Equation 3.14 can be used as a rough estimate for the 

wavenumber of noncollocation. However, the rule is not as accurate as it is for a point 

actuator-sensor pair. This implies that there is little room for error in manufacturing if 

an actual rectangular actuator-sensor pair is expected to produce a collocated transfer 

function to a reasonably high frequency. 
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Figure 3.10:   Pole-Zero Spacing for Rectangular Actuator to Sensor Transfer 
Functions; la = 0.2 

3.3.2    Triangular Actuator-Sensor Pairs 

The steps followed to analyze the noncollocated rectangular actuator-sensor pair are 

now used to analyze the noncollocated triangular actuator-sensor case. Figure 3.12(a) 

shows a triangular actuator-sensor pair where the sensor is shorter than the actuator, 

and Figure 3.12(b) shows a triangular actuator-sensor pair where the sensor is longer 

than the actuator. As in the rectangular case, the duality of the triangular actuator- 

sensor pair is such that if la = x and ls — y, the transfer function is identical when 

la = y and ls = x. 

As before, the procedure of Section 2.3 is used to find the dereverberated transfer 

function for the noncollocated triangular actuator-sensor pair.   The dereverberated 
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Figure 3.12:   Noncollocated   Triangular   Actuator-Sensor   Pair   (a)   Sensor 
Shorter than Actuator (b) Sensor Longer than Actuator 
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Table 3.5:   Low and High Frequency Asymptotes for Noncollocated Triangu- 
lar Actuator-Sensor Pairs on a Pinned-Pinned Beam 

^TLow ^THigh 

l.<k 

h > L 

W. - 3U 
2AEI 

Hda - 3J.) 
2AE1 

1 
Elk3 

1 
Elk3 

transfer function is determined for the two cases shown in Figure 3.12 and for vary- 

ing actuator placement. Table 3.5 shows the values of the analytical dereverberated 

asymptotes when the sensor is longer than the actuator and when the sensor is shorter 

than the actuator. Barring any singularities, the asymptotes in this table are inde- 

pendent of the position of the actuator on the pinned-pinned beam. 

It is observed from this table that when l„ = la, the value of the low frequency 

asymptote is equal to the collocated low frequency asymptote, as in Equation 2.40. 

As in the rectangular case, the noncollocated low asymptote is actually dominated by 

the smaller of I, and la. Also, the rolloff of a triangular actuator-sensor pair, regardless 

of their placement on the beam or their relative size, will roll off as a function of k' 
„-3 

The high frequency asymptote for the noncollocated triangular actuator-sensor 

pair is 7^NHigh = "Firs, regardless of actuator position or sensor size. The high 

frequency asymptote for the collocated case is TRHi6h = 2EIk3' Figure 3'13 sh°WS 

the transfer function and dereverberated asymptotes for a noncollocated triangular 

actuator-sensor pair on a pinned-pinned beam where the actuator is centered on a 

pinned-pinned beam, la = 0.2Z, and Zs = 0.4/. 

The high asymptote drops by a factor of 2.5 in comparison to the collocated case, 

yet in the rectangular case, the noncollocated high frequency asymptote was higher 

than the collocated high frequency asymptote.   This magnitude lowering effect is 
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Figure 3.13: Analytical and Dereverberated Transfer Functions for Noncol- 
located Triangular Actuator-Sensor Pair on a Pinned-Pinned 

Beam 

due to the evanescent waves across the actuator-sensor pair and the fact that, for 

length noncollocation, the triangular actuator to sensor transfer function maintains 

an interlaced pole-zero pattern. 

To quantify the effects of length noncollocation on the transfer function for a 

triangular actuator-sensor pair on a pinned-pinned beam, Figure 3.14 shows the pole- 

zero patterns when la = 0.21 and the value of ls varies such that the ratio of I, : la is the 

value on the horizontal axis. Unlike the rectangular case, there seems to be a pattern 

in the pole-zero spacing. As the length of the sensor increases, the wavenumber at 

which the zero first nears the frequency of the next pole decreases.   For example, 
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Figure 3.14:   Pole-Zero Spacing for Triangular Actuator to Sensor Transfer 
Functions; la — 0.2 

when f- = 1, this occurs near k = 50, while for -f- = 1.4, this occurs near k = 40. 
'a 'a 

Figure 3.14 also implies that an actuator-sensor pair can be designed to have 

close zero-pole spacing at specific wavenumbers. Figure 3.15 demonstrates this by 

plotting a collocated actuator to sensor transfer function, where la = ls — 0.21, and 

a noncollocated transfer function, where la — 0.21 and ls = 0.31. The static response 

of the two transfer functions is normalized to 0 dB in order to see the magnitude 

reduction of the noncollocated transfer function. In addition to this decrease in 

magnitude due to noncollocation, it is possible to see the close zero-pole spacing 

between Ä; = 40 and k = 70. If damping were added to these closely spaced modes, 

the transfer function would lose even more magnitude. 
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Figure 3.15:   Collocated and Noncollocated Transfer Function for Triangular 
Actuator-Sensor Pair on Pinned-Pinned Beam 

The alternating pole-zero pattern is usually associated with a collocated actuator 

to sensor transfer function, while a missing zero is usually associated with a non- 

collocated actuator-sensor pair. However, in the case of a triangular actuator-sensor 

pair, if the centroid remains collocated and the lengths are different, an alternating 

pole-zero pattern will remain, regardless of the difference in length. When the strain 

across the beam is cos(ifcx), the output of the triangular sensor, in relation to the point 

at the center, is Ak\ This function is shown in Figure 3.16. Thus, the shape of 

the window requires the sign of the input to be the same as the sign of the output. 

This means that there will be no sign changes in the modal residues of the transfer 

functions, which implies that there is an alternating pole-zero pattern, regardless of 
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Figure 3.16: Function for Triangular Sensor and Actuator Output 

the difference in length between actuator and sensor. 

Therefore, an investigation can be held to determine the best size of sensor and 

actuator. Using Figure 3.16 as a guide, the most effective difference in length for the 

actuator-sensor pair would use the local minimum of the sensor, designated with by 

o, to be at the local maximum of the actuator, designated with an by x. This should 

allow for several near pole-zero cancellations in the transfer function, which, when 

damping is added, would minimize the magnitude contribution of these modes. The 

first local minimum can be found by setting the function equal to zero and solving it. 

0   = 

h    = 

sin !(*i) 

h\ 
7T (3.15) 
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The first local maximum is found by solving the equation 

d  sin2(Äj2) 

Ö/C2 &2 

k2    =   tan(&2) 

k2   =   4.4934 (3-16) 

This implies that for the most effective results, the ratio is 

± = ^ = 1.43 (3-17) 
L     h 

Figure 3.14 confirms this, since the pole-zero spacing at £ = 1.4 has five near 

pole-zero cancellations. At lf = 1.5, the spacing between the eighth zero and the 

ninth pole is increased. Also, as the length of the sensor nears twice the length of 

the actuator, the spacing increases, and the large band of near pole-zero cancellations 

splits. At this point, adding damping will not be as effective. Finally, it should be 

noted that as the actuator becomes a smaller percentage of the beam length, the close 

pole-zero spacing occurs at a higher wavenumber, which means that the property of 

close pole-zero spacing becomes less useful. 

3.4    Discussion 

This chapter has discussed the modelling of noncollocated point, rectangular, and 

triangular actuator-sensor pairs on pinned-pinned Bernoulli-Euler beams. The dere- 

verberated transfer functions for each pair were determined and compared to the 

collocated case. In each case, the high frequency rolloff was shown to be of the same 

power of k as the corresponding collocated case. This implies that regardless of beam 
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end conditions, collocation or length noncollocation, the transfer function rolloff in k 

is known by the type of actuator-sensor pair. 

Different actuator-sensor pairs were shown to impact different design parameters. 

A relation was found between the wavenumber of noncollocation and the distance 

between point actuator and point sensor. It was also shown that the point actuator 

to sensor transfer function follows the noncollocated high frequency asymptote after 

the first missing zero in the transfer function. 

The rectangular actuator-sensor is very sensitive to length noncollocation. With 

very little percentage difference in actuator and sensor length, a missing zero appears 

in the transfer function. Also, there is an increase in the noncollocated high frequency 

asymptote which is accounted for by the numerous missing zeros in the noncollocated 

transfer functions. 

Finally, the noncollocated triangular actuator-sensor pair was compared to the 

collocated pair. There are no missing zeros in the length noncollocated triangular 

actuator to sensor transfer function, which allows for use of the noncollocated transfer 

function to obtain a small amount of additional gain margin without phase loss. 

If the ratio f- = 1.43, then there will be a region of near pole-zero cancellations 

within the transfer function. If damping is added to the transfer function, then at 

the wavenumber of the near pole-zero cancellation, there will be little response, and 

additional gain margin can be obtained. This analysis can be used to determine the 

best design for an actuator-sensor pair to be placed upon a real structure. 



Chapter 4 

Collocated Shaped Actuator-Sensor 
Pairs in Realistic Geometries 

The transfer functions derived in Chapter 2 showed the analytical results for a 

Bernoulli-Euler beam with modelled actuator inputs and sensor outputs. However, 

these models eliminated the effects of the finite thickness of the actuators and sensors, 

as well as the finite widths of the beam and the actuators. This chapter investigates 

the transfer functions for a rectangular actuator-sensor pair and a triangular actuator- 

sensor pair when these effects are included. 

4.1    Rectangular Actuator-Sensor Pair 

This section examines the influence of applying a rectangular piezoceramic actuator- 

sensor pair to a cantilevered steel beam. Various models are generated to determine 

the different effects of increased actuator thickness and of finite beam width upon the 

actuator to sensor transfer function. 

85 
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Figure 4.1:   Cantilevered Steel Beam with Rectangular Actuator-Sensor Pair 

of Zero Thickness 

4.1.1     Analytical Wave Model 

First, the analytical transfer function is found for the example beam using the wave 

solution technique of Section 2.2.3. The analytical dereverberated transfer function 

is then determined using the results in Equation 2.37 and Equation 2.38. Figure 4.1 

is a diagram of the steel, cantilever beam that is 20 inches long, 1.125 inches wide, 

and 0.032 inches thick. In metric units, this is 508mmx28.575mmx0.8128mm. The 

modulus of elasticity for steel is Es = 2.05 x 10nN/m2 and the density is p. = 

7860kg/m3. Figure 4.2 shows the analytical transfer function and dereverberated 

asymptotes for this case. Note the magnitude of the transfer function has units of 

rad/N-m. 

This solution technique neglects the mass and stiffness of the actuator and the 

finite width of the beam and actuator. Also, since this analytical model includes 

no damping, the actual magnitude of the transfer function at the frequencies of the 

poles is oo dB, and the actual magnitude of the transfer function at the frequencies 

of the zeros is -oo dB. The poles and zeros shown in Figure 4.2 appear to have finite 
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Figure 4.2:   Analytical and Dereverberated Transfer Functions for Rectangu- 
lar Actuator-Sensor Pair on Cantilevered Beam 

magnitudes because Matlab™, the software package used in constructing the figure, 

evaluates the transfer function at discrete points. 

4.1.2    Finite Element Models Using 2-D Beam Elements 

As mentioned before, the analytical wave solution neglects actuator mass and stiffness, 

as well as the finite width of a real beam and actuator. In this section, two-dimensional 

finite element models are used to determine more accurate models which would match 

the transfer function of an actual beam. The ANSYS program is chosen to create 

the finite element models, since the program has the ability to directly model three- 
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dimensional piezoelectric elements. 

The first step to improve upon the analytical model is adding a small amount 

of damping to the transfer function, such that the magnitudes of the peaks of the 

transfer function can be compared to each other. A finite element model of the 

beam in Figure 4.1 is created in ANSYS using two-node, two-dimensional, elastic, 

symmetric beam elements. The modes of this beam are determined and placed into 

a state space model, one percent of critical modal damping is added (( — 0.01), and 

the transfer function is generated. Figure 4.3 compares the damped finite element 

transfer function and the analytical transfer function. These two transfer functions 

apparently plot exactly except for the magnitudes of the poles and zeros. The transfer 

function from the finite element model gives insight into the relative magnitudes of 

the finite peaks of the transfer function, as well as determining a better estimate of 

the final reverberant crossover frequency. 

To find the dereverberated transfer function for the finite element model, the 

model is critically damped, ( = Xp, and the transfer function is determined. This 

transfer function is then compared to the asymptotes of the analytical dereverberated 

transfer function found in Equations 2.37 and 2.38. Figure 4.4 shows these two 

dereverberated transfer functions. The two transfer functions compare favorably, and 

the fidelity of the finite element model is again confirmed. 

Next, the finite thickness of the actuator-sensor pair is included in the model. The 

piezoceramic actuator is composed of PZT-5A, and the sensor is made of Polyviny- 

lidine Fluoride (PVDF). The modulus of elasticity of the PZT-5A piezoceramic ac- 

tuator is Ep = 6.098 x 1010N/m2 and the density is pp = 7500kg/m3. The mass and 

stiffness of the PVDF have very little effect, so they are neglected. This model is 

shown in Figure 4.5. 
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Figure 4.3: Transfer Functions for Rectangular Actuator-Sensor Pair on Can- 
tilevered Beam: Analytical with No Damping, and 2D FE Model 
with 1% Modal Damping 

To maintain symmetry about the beam, a representative actuator thickness is 

placed on the top and the bottom of the beam. In order to incorporate this thickness, 

two beam elements types are included within the finite element model. One element 

type has the properties of the steel beam, as in the first finite element model. The 

second element type includes the mass and stiffness of the PZT-5A actuators on the 

top and the bottom of the beam. These two element types are given the proper 

dimensions, and together they are used to create the finite element model. The 

transfer function is then found using the previously described technique, and 1% 

modal damping is added. 
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Figure 4.4: Dereverberated Rectangular Actuator to Sensor Transfer Func- 
tions for 2D FE Model of Cantilevered Beam with 1% Damping 
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Figure 4.5:   Cantilevered Steel Beam with Finite Thickness of Rectangular 
Actuator 
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Figure 4.6: Transfer Functions for FE Model with Zero Rectangular Actuator 
Thickness and with Rectangular Actuator Thickness of 7.5 mil 
on a Cantilevered Beam 

Figure 4.6 is a plot of the actuator to sensor transfer functions of the finite element 

model without the actuator thickness and the finite element model with the actuator 

thickness. Note how the increased thickness of the actuator causes the frequencies 

of the poles to increase, indicating that the stiffness perturbation is more significant 

than the mass perturbation. 

Thus, the question arises: what is the effect of increased actuator thickness upon 

the actuator to sensor transfer function? Figure 4.7 addresses this question by plotting 

the dereverberated transfer functions when the actuator thickness on each side of the 

beam is 0 mils, 7.5 mils, and 15 mils. This plot shows that as the thickness increases, 
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Figure 4.7: Analytical Asymptotes and Dereverberated Transfer Functions 
for Varying Rectangular Actuator Thickness on Cantilever Beam: 

0 mil, 7.5 mil, 15 mil 

the beam stiffness increases and the static gain decreases. The transfer function is still 

rolling off at -10 dB/decade at high frequencies. However, as the actuator thickness 

increases, the frequency at which the transfer function begins to rolloff increases as 

well. 

To explain this theoretically, the stiffness of the actuator can be modelled as 

strain feedback. As the gain K, is increased, the frequencies of the closed loop poles 

move to the frequencies where the undamped open loop zeros cross 0 dB. At very 

low frequencies, the poles do not move much because they are already very close 

to the zeros. As the frequency increases, the pole-zero spacing of the open loop 

transfer function increases, so that the finite actuator thickness has a greater effect. 

However, at high frequencies, the open loop transfer function has rolled off such 

that the undamped open loop zeros never cross 0 dB, so the finite thickness does not 

affect these modes. This means that as the actuator thickness increases, the pole-zero 
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Figure 4.8:   Finite Element Mesh of the Top View of Cantilevered, Steel Beam 
with Rectangular Actuator 

spacing of the transfer function only changes within a small bandwidth near crossover, 

and the pole-zero spacing does not change at very low or very high frequencies. 

4.1.3    Finite Element Model Using 3D Brick Elements 

The finite element models presented in the previous subsection improve upon the 

analytical wave model by adding damping and finite actuator thickness. However, 

they ignore a major factor in the transfer function that would influence actual be- 

havior in the laboratory: the finite width of the beam and the actuators. In order to 

model these effects, a finite element model is developed which is composed of three- 

dimensional,eight-node, brick solid elements, and three-dimensional, eight-node, brick 

elements with electromechanical coupling. The solid elements are used to model the 

beam, and the coupled elements are used to model the PZT-5A actuators. The side 

view and end view of this beam are the same as in Figure 4.5. The beam dimensions 

are 20 inchesx 1.125 inchesx 0.032 inches. Since this model is three-dimensional, 

there is now a top and bottom view, which are the same due to the symmetry of the 

beam. A top view of the finite element mesh of the beam is shown in Figure 4.8. 

The cantilevered end is on the left, and the actuator is on the portion of the beam 

which has the finer mesh. The dimensions of the PZT-5A actuators are 5 inches x 

0.75 inches x 0.0075 inches. 
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Figure 4.9:   Rectangular Actuator to Sensor Transfer Functions for 2D FE 
Model with Finite Actuator Thickness and for 3D FE Model 

To obtain the transfer function, a state space representation of the model is cre- 

ated. The modal frequencies are placed into the A matrix, the voltage output of the 

actuators is placed into the B and C matrices, 1% modal damping is added, and the 

transfer function is calculated. Figure 4.9 plots the transfer function of the finite 

element model using two-dimensional beam elements and an actuator thickness of 7.5 

mils, as shown in Figure 4.5, and the transfer function of the finite element model 

using three-dimensional brick elements. The output of the 3D model, whose units 

are V/V, is normalized to the output of the 2D model. The frequencies of the low 

frequency poles and zeros match fairly well, although they are not exactly the same. 

This could be related to the fact that, in the three-dimensional model the width of 
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(a) 
Frequency: 15590 Hz 

(b) 
Frequency: 16180 Hz 

Figure 4.10:   Three-Dimensional Modeshapes near 16000 Hz of Cantilever 
Beam with Rectangular Actuator-Sensor Pair 

the actuator is not the same as the width of the beam, whereas the two-dimensional 

beam assumed a uniform cross-section in the portion of the beam covered by the 

actuator. 

From this plot, it is obvious that including the width of the beam has a profound 

effect upon the transfer function. The rolloff of the transfer function for the three- 

dimensional beam occurs after 20,000 Hz, rather than after 200 Hz in that of the 

two-dimensional beam. There is also a high magnitude resonance in the transfer 

function for the three-dimensional beam near 16000 Hz. This resonance is caused by- 

several modes exhibiting bending across the width of the beam.  Figure 4.10 shows 
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a few of the mode shapes of the beam near 16000 Hz. It is this family of modes, 

which exhibits bending across the width of the beam and has high strain coupling to 

the actuator and sensor, which causes the high magnitude response in the transfer 

function. Therefore, if this experiment were performed in a laboratory, one would 

expect the magnitude of these modes to delay the rolloff of the transfer function by 

two decades. 

4.2     Triangular Actuator-Sensor Pair 

This section compares the analytical wave solution, two-dimensional finite element 

solutions and three-dimensional finite element solution for a cantilevered beam with a 

triangular actuator-sensor pair. Damping, finite actuator thickness, and finite beam 

and actuator width are included in the models to determine their effects upon the 

actuator to sensor transfer function. A transfer function from experimental data is 

then compared to these models. 

4.2.1     Analytical Wave Model 

The analytical transfer function for the cantilevered steel beam with a triangular 

actuator-sensor pair is determined using the solution algorithm of Section 2.2.4. The 

asymptotic dereverberated transfer function is found from Equations 2.40 and 2.41. 

A diagram of this cantilevered steel beam with the applied triangular actuator-sensor 

pair is in Figure 4.11. Figure 4.12 plots the analytical transfer function and its 

dereverberated asymptotes. 

Since the finite thickness of the actuator and the finite width of the beam are not 
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Figure 4.11:   Cantilevered Steel Beam with Triangular Actuator-Sensor Pair 
of Zero Thickness 
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Figure 4.12: Analytical and Dereverberated Transfer Functions for Triangu- 
lar Actuator-Sensor Pair on a Cantilevered Beam with Realistic 
Geometry 
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included in this model, this model will not match with any experimental data. As 

in the case of rectangular actuator-sensor pair, finite element models will be used to 

improve upon this model. 

4.2.2    Two-Dimensional Finite Element Models 

A finite element model of the beam in Figure 4.11 is generated using two-dimensional 

elastic beam elements. The modes of this beam are determined and placed into a state 

space model, and the transfer function is generated. Figure 4.13 shows the damped 

transfer function and the analytical transfer function. In the case of the triangular 

actuator-sensor pair, the units of the magnitude of the transfer function are m/N. 

However, Figure 4.13 plots the magnitude of the transfer function in decibels. As in 

the case of the rectangular actuator-sensor pair, these two transfer functions appar- 

ently plot exactly except for the magnitudes of the poles and zeros. Now, with the 

transfer function generated from the finite element model, a better estimate of the 

magnitude response for the individual modes and the final reverberant crossover fre- 

quency are known. Note that the crossover frequency of the dereverberated transfer 

function remains the same. Also, when this small amount of damping is added, above 

1000 Hz, many pole-zero pairs nearly disappear due to high modal overlap. 

As in the rectangular case, the dereverberated transfer function for the finite 

element model is determined by adding critical damping to the model, and solving 

for the transfer function. This transfer function is then compared to the asymptotes of 

the analytical dereverberated transfer function, Equations 2.40 and 2.41. Figure 4.14 

shows these two dereverberated transfer functions, which match well, but not as well 

as the corresponding plot for the rectangular actuator-sensor pair. 
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Figure 4.13: Transfer Functions for Triangular Actuator-Sensor Pair on Can- 
tilevered Beam: Analytical with No Damping, and 2D FE 

Model with 1% Damping 

The finite thickness of the actuator is next to be included in the model, as shown 

in Figure 4.15. In order to incorporate this triangular actuator thickness, two types of 

beam elements are included within the finite element model. The first element type 

has the properties of the steel beam, as in the previous finite element model. The 

second element is a two-node, two-dimensional, tapered, symmetric, elastic beam, 

which includes the thickness of the PZT-5A actuators on the top and the bottom of 

the beam. These two element types are given the proper dimensions and are used to 

create the finite element model. The transfer function is then found as in Section 4.1. 

Figure 4.16 plots the triangular actuator to sensor transfer functions of the finite 
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Figure 4.14:   Dereverberated Triangular Actuator to Sensor Transfer Func- 
tions for 2D FE Model with 1% Damping and Analytical Model 
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Figure 4.15:   Cantilevered Steel Beam with Finite Thickness of Rectangular 

Actuator 



4.2.   Triangular Actuator-Sensor Pair 101 

-40 

-60 

-80 

CD 
2. 
<D 

TJ 
3 " 

'E 
CD 
CO 
E 

-100 

-120 

-140 

-160 
10 10" 

 FEM Dereverberated TF 
— Analytical Asymptotes 

10 10' 
frequency (Hz) 

Figure 4.16:   Transfer Functions for FE Model with Zero Triangular Actuator 
Thickness and with Triangular Actuator Thickness of 7.5 mil 

element model without the actuator thickness, from Figure 4.11, and the finite element 

model with the actuator thickness, from Figure 4.15. Note how the increased mass 

and stiffness of the beam cause the frequencies of the poles to increase. This is same 

effect as in the rectangular actuator-sensor case. As the thickness of the actuator 

increases, the beam stiffness increases and the static gain decreases. Figure 4.17 plots 

the dereverberated asymptotes of the wave model and the dereverberated transfer 

function for the actuator being 0 mils, 7.5 mils, and 15 mils at its thickest point. As 

this plot shows, the transfer function is still rolling off at -30 dB/decade. However, as 

the thickness increases, the frequency at which it begins to rolloff increases slightly, 

but not as much as in the case of the rectangular actuator-sensor pair of Figure 4.7. 



102 Chapter 4.   Collocated Actuator-Sensor Pairs in Realistic Geometries 

-60 

-80- 

m 

-100 

CO 
E-120 

-140- 

-160 

- - 

- 

- 
— Actuator Thickness 0 mil 
— - Actuator Thickness 7.5 mil 
— Actuator Thickness 15 mil 

Analytical Asymptotes 

i                                i 1 

10 10 
frequency (Hz) 

10 

Figure 4.17: Analytical Asymptotes and Dereverberated Transfer Functions 
for Varying Actuator Thickness on a Cantilever Beam: 0 mil, 
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Figure 4.18:   Top and End View of Three-Dimensional Steel Beam with Tri- 
angular Actuator-Sensor Pairs 

4.2.3     Three-Dimensional Finite Element Models 

In Section 4.1 it was shown that including the finite width of the beam in a finite 

model has a large effect upon transfer function. Now, a three-dimensional brick model 

of the cantilevered beam with triangular actuators and sensors is developed using the 

same element types as in the rectangular case. 
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Figure 4.19:   Three-Dimensional Perspective of Steel Beam with Triangular 
Actuator-Sensor Pairs 

Figure 4.18 is a schematic of the top and end views of the three-dimensional beam 

with triangular actuator-sensor pairs. In the three-dimensional case, the triangular 

shape is obtained by shaping the width of the actuator; the thickness is a constant 

7.5 mils. The symmetry of the beam is maintained by including two triangles which 

are symmetric about the center of the beam in the shape of the actuator. Also, there 

is an actuator-sensor pair on the top and the bottom of the beam. Figure 4.19 gives 

a three-dimensional perspective of the entire beam, where the thickness of the beam 

and the actuator are exaggerated. 

To obtain the actuator to sensor transfer function for this beam, the natural 

modes of the beam are calculated by the finite element software. Then a state space 

representation of the model is developed as in the rectangular case, and the transfer 

function is calculated. 

Figure 4.20 compares the transfer function of the two-dimensional finite element 

model with a finite actuator thickness in Figure 4.16 and the transfer function of the 
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Figure 4.20:   Triangular Actuator to Sensor Transfer Functions for 2D FE 
Model with Finite Actuator Thickness and for 3D FE Model 

three-dimensional finite element model. The output of the 3D model, whose units 

are V/V, is normalized to the output of the 2D model. The transfer function of the 

three-dimensional beam shows the impact of the transverse bending modes, similar 

to Figure 4.9. However, the frequency range at which the transverse bending modes 

take effect is lower for the triangular case. Also, a second resonance in the transfer 

function delays some of the rolloff after the first group. These resonances are caused 

by families of first and third transverse bending modes in the beam. Figure 4.21 

shows a few of these mode shapes. 
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(a) 
Frequency: 5623 Hz 

(b) 
Frequency: 6200 Hz 

(C) 

Frequency: 33176 Hz 

(d) 
Frequency: 36312 Hz 

Figure 4.21:   Modeshapes  of Cantilever Beam with  Triangular  Actuator- 
Sensor Pair Showing First and Third Mode Transverse Bending 
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Figure 4.22: Experimental Transfer Function and FE Model Transfer Function 

4.2.4    Experimental Results 

In order to confirm this analysis an experiment was conducted in the laboratory using 

a beam matching the dimensions and properties of that pictured in Figure 4.18. The 

actuator to sensor transfer function was recorded, and in Figure 4.22 the experimental 

data is compared to the transfer function generated from the three-dimensional finite 

element model. The static gains of both transfer functions have been normalized such 

that the two transfer functions match at 1000 Hz. 

Overall, the experimental data correlates very well with the finite element model. 

At low frequency, there is a small gain error due to laboratory inconsistencies, such 

as thermal effects, to which the PVDF sensor is particularly sensitive. Additionally, 

the coherence of the data at low frequency is poor due to noise in the system. At very 
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high frequencies, the correlation between transfer functions is low due to increasing 

inaccuracies when nearing the limit of the finite element model. Regardless of these 

small errors, the message is clear: the finite width of the beam, the actuator, and the 

sensor lead to a large response in the transfer function above the frequency of the 

rolloff predicted by the two-dimensional transfer function. This large response is due 

to higher frequency transverse bending modes. 

4.3    Discussion 

This chapter discussed various models generated to improve upon the original Bernoulli- 

Euler analytical models generated in Chapter 2. While adding damping and finite 

actuator thickness to the model improved its accuracy, the most accurate model was 

obtained when the finite width of the beam and the actuator-sensor pair were in- 

cluded. In this case, the rolloff due to the lengthwise bending modes still occurs, 

however, the magnitude of the response to the transverse bending modes is strong 

enough to delay that rolloff. 

A current field of research is the use of interdigitated electrodes on piezoceramic 

actuators and sensors, which would allow for uniaxial actuation and sensing. This 

means that an actuator would excite only the longitudinal bending strain, and the 

sensor would only measure the longitudinal bending strain. If such an actuator-sensor 

pair were used on this beam, the response to the transverse bending strain could be 

lessened, and the rolloff due to the longitudinal bending stain would reappear. 

To investigate this possibility of decreasing the response to the transverse bending 

modes, a new finite element model is created. This model has the same dimensions 

and properties as in Figure 4.18, except for one: the electromechanical constant which 
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Figure 4.23:   Transfer Function for FE Model of Rectangular Actuator-Sensor 
Pair with d32 is Active and Inactive 

couples the modal strain of the transverse bending modes and the voltage, d32, is set to 

zero. A new state space model is determined, and the transfer function is calculated. 

Figure 4.23 compares the rectangular actuator to sensor transfer functions where 

d32 is active and inactive, i.e. when the actuator and sensor are piezoelectrically 

isotropic, d32 = d31, and piezoelectrically anisotropic, d32 = 0. These two transfer 

functions are normalized such that the static response is 0 dB. The transfer function is 

exhibiting some of the rolloff due to the longitudinal bending modes. The response to 

the transverse waves is not zero when d32 = 0, however, the magnitude of the response 

has dropped significantly as compared to the magnitude of the transfer function when 

d32 = d31. This magnitude reduction is approximately 20 dB, which is about a factor 
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Figure 4.24:   Transfer Function for FE Model of Triangular Actuator-Sensor 
Pair with d32 is Active and Inactive 

of 10. Poisson's ratio for steel is v = 0.33, and v2 = 0.1089, which is one-tenth of the 

previous coupling. It is evident that the magnitude reduction is related to the Poisson 

ratio of the beam, since the transverse strain associated with transverse bending is 

still sensed and actuated by the d31 piezoelectric effects. 

Figure 4.24 compares the transfer functions for the triangular pair where the 

actuator and sensor are sensitive to transverse bending waves and are not sensitive 

to these waves. The effect of setting d32 = 0 in the triangular case is similar to that 

of the rectangular case. Therefore, in both the rectangular and triangular cases it is 

possible to retain some of the rolloff of the transfer function for the Bernoulli-Euler 

beam by further tailoring the actuator-sensor pair to the task. 



Chapter 5 

Conclusions 

5.1     Analytical Models for Collocated Actuator- 

Sensor Pairs 

It was shown in Chapter 2 that wave models can be used to determine analytical 

expressions for the magnitude of actuator to sensor transfer functions for Bernoulli- 

Euler beams. The analytical dereverberated transfer function is composed of low 

and high frequency asymptotes, which are determined by taking the limits of the 

analytical transfer function as k —> 0 and k —> oo. 

The high frequency transfer function for a point actuator-sensor pair always rolls 

off as a function of A;-3. The exact solution for the low frequency asymptote depends 

upon the location of the actuator-sensor pair on the beam and the beam end condi- 

tions. The exact solution for the high frequency asymptote is only dependent upon 

the beam end conditions. 

The high frequency transfer function for a rectangular actuator-sensor pair always 

rolls off as a function of A;-1, while the transfer function for a triangular pair always 

rolls off as a function of k~3.   The exact solutions for the dereverberated transfer 

111 
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functions of the rectangular and triangular pairs are not dependent upon actuator- 

sensor location or the beam end conditions. 

At first glance, the analytical transfer function for actuator-sensor pairs whose 

shapes are more complex than a triangular, e.g. quadratic and cubic, appear to 

rolloff with slopes steeper than k"A. However, further investigation revealed implicit 

factors of jb in the numerator of the analytical transfer function, which causes it to roll 

off as a function of AT4, whenever the shape is more complex than triangular. Due 

to manufacturing difficulties and diminishing returns in rolloff, shapes more complex 

than triangular are deemed impractical, and no further investigation was conducted. 

In addition to the wave solution, a modal residue solution were used to determine 

the dereverberated transfer functions for several actuator-sensor pairs on a pinned- 

pinned beam. These solutions produced results which more closely matched the 

analytical asymptotes as the actuator and sensor shapes increased in complexity. 

However, when end conditions other than pinned-pinned are used, the assumed mode 

shape becomes complicated, and the solution becomes difficult to generate due to 

numerical instabilities. 

5.2     Analytical Models for Noncollocated Actuator- 

Sensor Pairs 

In Chapter 3, wave modelling was used to determine the transfer functions for non- 

collocated point, rectangular, and triangular actuator-sensor pairs on pinned-pinned 

beams. Only noncollocation due to a difference in length were considered for the 

shaped actuator-sensor pairs. 
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The transfer function for the noncollocated point actuator-sensor pair will rolloff 

as a function of A;-3, regardless of the distance between the actuator and sensor. 

Only in analytically perfect collocated conditions will the transfer function follow the 

collocated high frequency asymptote. Even with a slight noncollocation, the transfer 

function will eventually follow the lower noncollocated asymptote. The asymptote 

is lower because the rolloff effect of the evanescent waves is stronger than the rollup 

effect of the missing zeros in the transfer function. 

The transfer function becomes noncollocated at the wavenumber where the defor- 

mation of the beam at the position of the actuator is the opposite sign of that of the 

position of the sensor. A general rule of thumb for wavenumber of noncollocation is 

71" 

Knon —  TTj       7 ("•■"■) 
Z jXa [ 

where A^on is the wavenumber of noncollocation and x3 is the distance between the 

actuator and sensor. 

It is known that for a collocated point actuator-sensor pair, the zeros of the transfer 

function are the same as the poles of the transfer function for the same beam with a 

pinned boundary at the position of the actuator-sensor pair. Analysis showed that, 

in the case of a noncollocated point actuator-sensor pair, the zeros of the transfer 

function cannot be replicated by the poles due to any simple boundary condition. 

In the case of the noncollocated rectangular actuator-sensor pair, the transfer 

function will always rolloff as a function of k~x, regardless of the difference in actuator 

and sensor lengths. However, in the rectangular case, the noncollocated asymptote is 

actually higher than the collocated asymptote. The asymptote is higher because the 

missing zeros have a greater effect on the magnitude than the evanescent waves. 
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The rule of thumb in Equation 5.1 can be used as a rough estimate for the 

wavenumber of noncollocation, where xa = la - la. As the difference in length of 

actuator and length of sensor increases, the wavenumber of the first missing zero de- 

creases. This implies that there is little room for manufacturing error if a collocated 

transfer function is desired using a rectangular actuator-sensor pair. 

The actuator to sensor transfer function for the triangular pair will always rolloff 

as a function of k~3, regardless of the difference in length between the actuator and 

sensor. The noncollocated transfer function follows an asymptote which is lower than 

the collocated asymptote. This is a result of two factors: there are no missing zeros 

in the noncollocated transfer function to increase the magnitude, and the evanescent 

waves cause a magnitude decrease in the transfer function. 

These properties make it possible to improve the rolloff characteristics of the 

transfer function. By following the rule 

lf = 1.43 (5.2) 

where ls is the length of the sensor and la is the length of the actuator, the region of 

near pole-zero cancellations in the transfer function can be maximized. Thus, a small 

amount of additional rolloff can be gained, and reverberant modal responses in this 

range of wavenumber are minimized. 
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5.3    2D and 3D Solutions for Collocated Shaped 

Actuator-Sensor Pairs 

Chapter 4 showed that finite element models could be used to add realistic effects 

to the beam model that were not included in the wave models. Such effects include 

damping, finite actuator thickness, and finite beam width. The general results of 

adding these effects is the same for both the rectangular and triangular actuator- 

sensor pair. 

The transfer function created from the two dimensional finite element models 

match the wave solution extremely well. Once this correlation is established, the 

finite element model can be used to add damping and finite actuator thickness to 

the system. As the thickness of the actuator increases, the transfer function de- 

creases in magnitude due to the increased stiffness. Also, the frequency at which 

the dereverberated transfer function rolls off increases as the actuator thickness in- 

creases. However, the slope of the high frequency rolloff remains the same regardless 

of actuator thickness. 

The transfer functions generated from the three dimensional finite element models 

show the problems associated with high frequency transverse bending modes. Since 

the actuators impose transverse strain, the sensor observes transverse strain, and there 

is a Poisson coupling between longitudinal bending modes and transverse bending 

modes, a large response occurs in the transfer function due to the transverse modes. 

This large response causes the response due to the transverse modes to mask the 

rolloff associated with the longitudinal bending modes. 

If the actuator and sensor are designed such that the actuator imposes no trans- 

verse strain and the sensor observes no transverse strain (d32 = 0 for both the actuator 
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and sensor), only the Poisson coupling remains. This will reduce the transfer function 

response to the transverse bending modes by about 20 dB, and some of the roll off 

associated with the Bernoulli-Euler bending can be recovered. 
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Appendix A 

Transfer Functions for Collocated 
Actuator-Sensor Pairs 

This Appendix is a listing of some representative transfer functions that were derived 

for the completion of this work. For all of the following transfer functions listed, the 

actuator is centered on the beam. 

A.l     Transfer Functions for Point Actuator-Sensor 

Pairs 

Collocated point actuator-sensor pair on a pinned-pinned beam, which is the same as 

Equation 2.29: 

yp _     ei» (sin(f) - cos(f)) + e-l» (sin(f) + cos(f)) 

up 4£/Pcos(f)(e^ + e-K) 

Collocated point actuator-sensor pair on a free-free beam: 

(A.l) 

v cos(f)p' + e-K)+2 
yp JLAIA 1— _ A.2) 
uP      2EIV [elfci (sin(f) + cos(f)) + e"*" (sin(f) - cos(f ]" 

121 
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Collocated point actuator-sensor pair on a cantilevered beam: 

VP 
cos(f) [cos(f) (ekl - e-kl) - sin(g) (efe; + e~kl + 2)" 

2EIP (2cos2(f)-l)(ew + e-fc') + 2 
(A.3) 

Noncollocated point actuator-sensor pair on a pinned-pinned beam for negative xa: 

VP 

Ur 

eikl + e-2kl 

for positive xs: 

VP 

Ur, 

e$kl + e-lkl 

cos(kxs) sin(|) - sin(ibx.) cos(f)] +cos(f) (efoe^'-e-foe-**-) 

4S/Fcos(f)(elw + e-^) 
(A.4) 

cos(Jbx.)sin(f) + sm(kxs)cos(f)] +cos(f) (el»e-
fa'-e-?Me*") 

4E/Pcos(f)(elfc' + e-?fei) 
(A.5) 

Noncollocated point actuator-sensor pair on a cantilevered beam for negative xs: 

Ci = 2sin(ifcxs)[sin(f)(e-^-e^)-coS(f)(e-^+e^)+(i _ Cos2(f))(eH+e-
w)-^ 

+cos(^s)[2sin(f)cos©(-e
w-e-fc') + efe'-e-w" 

+e-A:3:'[sin(f)(e^'-e-?w-2cos©)-coS(f)(e- = w+e"fc'+2e-
wcos(f))+e-

fe'-l' 

+e
fc-[sin(f)(e-^'-e^'-2cos(f))+cos(f)(e^w+e^'+2ewcos©)-e

fc' + i; 

VP Ci 

up iEIk3 (2cos2(f)-l)(ew + e-fe') + 2 
(A.6) 
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for positive xa: 

C2 = 2sin(**4sin(f)(e-^-^ 

+cos(lbz.)[2 sin© cos© (-ekl- e~kl) + ekl - e~kl] 

• 'sin© (e$kl- e~ $kl- 2 cos©) - cos© (e" *kl+ e*kl- 2efc'cos©)- ekl+1] 

sin© (e- *«- e*u- 2 cos©) - cos© (e~ ^kl-e^kl+ 2e-
fc'cos©)+ e"» -1 

+e 

2/P <72 (A.7) 
up      AEIk3 [(2 cos2(§-) - l) (ekl + e~kl) + 2 

A.2     Transfer Functions for Rectangular Actuator 

Sensor Pairs 
Collocated rectangular actuator-sensor pair on a pinned-pinned beam: 

C3 
cos(ä)[ciw(e-w--2oos(^)Bin(^)-l)-c-*w(ew« + 2coB(^)Bin(^)-l) 

+2sin(f) (cos2 (a*) - l) (e*H + e"*") 

<73 

«r      2EIkcos(f)(e12kl + e^kl) 

Collocated rectangular actuator-sensor pair on a free-free beam: 

(A.8) 

C4 
cos© [el» (e-^-2cos(H

f)sin(f)-2cos2(Ma) + l) 

+ e-|^ + 2cos2(^)-2cos(^)sin(^) + l)] 

+sin© [ e^(e-^-2cos(f )sin(^)-2cos2(^)-3) 

+ e-^(-e^-2cos2(^)-2cos(^)sin(^) + 3 

+4sin(^)(e-^-e^) 
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2/r 

UT 2EIk cos(f) (e*u - e-*kl) + sin(f) (elw + e~iu) 
(A.9) 

Collocated rectangular actuator-sensor pair on a cantilevered beam: 

C5 =2 cos® sin® [(2 cos2®) - l) (ekl + e~u) - ekU - e'kU + 2 

+ 2 cos® sin® [(1-2 cos2©) (e« + e'kl) - 2] 

+ 2cos2© [e-w (l - ew*) - ekl (l - e^ 

+ (2 cos2® - e~kU - 3) (e"w - efc') + e""- - ekU 

Vr 

uT      2EIk 

Cs (A.10) 
(2cos2(f)-l)(efc' + e-fe') + 2 

Noncollocated rectangular actuator-sensor pair on a pinned-pinned beam, where the 

sensor is shorter than the actuator: 

Ce, =—2 sin >kl, e^kl + e-l») (sin® sin® + cos© cos®) 

+cos® [(e-?"• - e*w«) (e^e~^ + C-J
weJw-)] 

Cfi 

ur      2JEJ/fecos(^)(e»w + e-2«) 

When the sensor is longer than the actuator: 

C77 =-2 sin®) [(e*u + e-i») (sin© sin® + cos© cos®) 

+cos© [(e-*w- - e*w«) (e^c-i"' + e^'e^* 

(A.11) 

«r      2EIkcos{%)(eSM + e-*kl) 
(A.12) 
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A.3    Transfer Functions for Triangular Actuator- 

Sensor Pairs 

Collocated triangular actuator-sensor pair on a pinned-pinned beam: 

C8 =2sin© {(ekl + l) (2cos(^) - l) + efc'cos2(^)' 

+cos(f) [2 sin(^) (cos(^)-2) (ekl + l)+ekl (e~kla-4e~>kl* + 3) -ekx«+4e*kU -3 

Vt c8 

ut      2EIk3cos(f)(ekl + l) 

Collocated triangular actuator-sensor pair on a free-free beam: 

C9 = sin© [2 cos(^) (cos(^) - 2) (l - ekl) 

+2sin(^)(cos(f)-2)(l + efc') 

+eu (e~M* _ 4e-!
w° + l) - ekU + 4e*kU - 1 

+ cos©[2cos(f)(cos(^)-2)(e
fc' + l) 

+2sin(t)(cos(t)-2)(efc'-l) 

+ ekl  ^-kla _ 4e-|W« + 5j   + eH. _ 4e|fcia + 5 

+4e*fc' (l - cos(^)) (2 - e-lw- - e**'*) 

J/t C9 

«t      2EIk3 (cos(f) (efc< - 1) + sin(f) (ekl + 1)) 

(A.13) 

(A.14) 
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Collocated triangular actuator-sensor pair on a cantilevered beam: 

Cio = 2cos(f)sin(f)[e
fei(4e^+4e-^-e-^-e^-6)+2cos(^)(e

2W + l)(2 s© sin© lekl(4e*kU+4e-*kU-e-kl°-e 

3(^)sin(^)[(2cos2(f)-l)(e2W + l) 

32g) [e2W (e-M. _ 4e-£«. _ sin(Ma) + ; 

(2-cos©)) 

+ 2 cosi 

+ 2cos2©[e2W(e-Wa-4e-2 

2cos©)(2-cos©))(e2" + 

-w f4el
w«_4e-2W<'-[-e~'"a-'''"0l-4-i:>"" (4-^_2 

'« + i) _ 2ekl 

i©) + 3) - eWa + 4e*w» - sin©) - 

+    e 

l)+4sin©)(e2W-2efe' + l) 

-kla _ ekla\ _|_ g2W   /^ — Kla 

Cio 

.l)-4e»H' + ew" + l 

(A.15) 2/t_ ^iu  

wt ~ 2£Ifc3 [2ew + (2cos2(f) - l) (e2fei + 1) 

Noncollocated triangular actuator-sensor pair on a pinned-pinned beam, where 

sensor is shorter than actuator: 

Cn = 2 sin© (eW + l) (l - cos©)) (cos©) - l) 

+ cos(: kl\ 2 (ekl + l) (sin© cos© - sin© - sin 

+ (e-|«-e« - e-J««) (e*H« + e"^ - 2 

+2(ew(l-e-*H-)+eJw--l 

2/t C7ii 

ut      2£/Pcos(f)(efc< + l) 

When the sensor is longer than the actuator: 

(A.16) 

C12 = 2sin© (ekl + l) (l - cos©) (cos©) - l) 

+ COS© 2(e*< + l)(sm©)cos©)-sin©)-Sin 

+2(efe'(l-e-^)+e^-l 
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Vt Cl2 

ttt      2£I/k3cos(f)(efc' + l) 
(A.17) 

A.4    Transfer Function for Quadratic Actuator- 

Sensor Pair 
Collocated quadratic actuator-sensor pair on a pinned-pinned beam: 

C13 = 2 sin© ( ekl + l) (ö - 4 cos2(^) - cos2(f) - sin(^) sin(^)) 

2 (ekl + l) (4 sin(^) cos(^) + sin(^) cos(^) - 4 sin(^) cos(^)) 

+ekl (5 - 2kla + 4e-*kla - Ae'*kU - Ae~^kla - e~kla) 

(A.18) 

+ cos(f) 

-5 - 2kla - 4e*kla + 4e*kla + Ae^kla + ekl° 

C 13 V3L  =    
uq      2EIk5cos(k})(ekl + l) 

(A.19) 

A.5     Cubic Actuator to Sensor Transfer Function 

Collocated cubic actuator-sensor pair on a pinned-pinned beam: 

C714 = 192 sin®   [   (ekl + l) (cos(^) (2 - cos(^)) - l) 

+ 4cos(^)(cos(t)-cos(^)-l) 

+ 4cos(^) (2cos(^) - cos(^) - cos(^) + l)" 

+ cos©   [  192 (ekl + l) [sin(^) (cos(f) - 4 cos(^) + 4 cos© - 2) 

+4sin(^)(cos(^)-l) 

+4sin(^) (cos(^) - 2cos(^) + l)" 

+ 96 ekl(e-kl" + 12e-*kl* + 4e-*kla-4e-*kU + 4e-* 

-12e~*kU -4e-*kla -12e-*kla + 11) 

kla 
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-ekla -I2e*kla -4e*kla + 4eikla -4e* 

+12eeWa + 4e4Wa + 12e2Wa-ll 

+ k3l3
a (ekl + l) 

kla. 

c 14 

uc      192£/Fcos(f)(ew + l) 
(A.20) 


